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BACKGROUND: All cells, prokaryotes and eu-
karyotes, release extracellular vesicles (EVs)
as part of their normal physiology and during
acquired abnormalities. EVs can be broadly
divided into two categories, ectosomes and
exosomes. Ectosomes are vesicles that pinch
off the surface of the plasma membrane via
outward budding, and include microvesicles,
microparticles, and large vesicles in the size
range of ~50nm to 1 mmindiameter. Exosomes
are EVs with a size range of ~40 to 160 nm
(average ~100 nm) in diameter with an endo-
somal origin. Sequential invagination of the
plasma membrane ultimately results in the
formation of multivesicular bodies, which can
intersect with other intracellular vesicles and
organelles, contributing to diversity in the con-
stituents of exosomes. Depending on the cell
of origin, EVs, including exosomes, can contain
many constituents of a cell, including DNA,
RNA, lipids, metabolites, and cytosolic and
cell-surface proteins. The physiological pur-
pose of generating exosomes remains largely
unknown and needs investigation. One spec-
ulated role is that exosomes likely remove

excess and/or unnecessary constituents from
cells tomaintain cellular homeostasis. Recent
studies reviewedhere also indicate a functional,
targeted, mechanism-driven accumulation of
specific cellular components in exosomes, sug-
gesting that they have a role in regulating inter-
cellular communication.

ADVANCES: Exosomes are associated with im-
mune responses, viral pathogenicity, pregnan-
cy, cardiovascular diseases, central nervous
system–related diseases, and cancer progres-
sion. Proteins, metabolites, and nucleic acids
delivered by exosomes into recipient cells ef-
fectively alter their biological response. Such
exosome-mediated responses can be disease
promoting or restraining. The intrinsic prop-
erties of exosomes in regulating complex intra-
cellular pathways has advanced their potential
utility in the therapeutic control of many dis-
eases, including neurodegenerative conditions
and cancer. Exosomes can be engineered to
deliver diverse therapeutic payloads, including
short interfering RNAs, antisense oligonucleo-
tides, chemotherapeutic agents, and immune

modulators, with an ability to direct their de-
livery to a desired target. The lipid and pro-
tein composition of exosomes can affect their
pharmacokinetic properties, and their nat-
ural constituents may play a role in enhanced
bioavailability and in minimizing adverse re-
actions. In addition to their therapeutic po-

tential, exosomes also have
the potential to aid in dis-
ease diagnosis. They have
been reported in all bio-
logical fluids, and the
compositionof thecomplex
cargo of exosomes is read-

ily accessible via sampling of biological fluids
(liquid biopsies). Exosome-based liquid biopsy
highlights their potential utility in diagnosis
and determining the prognosis of patients with
cancer and other diseases. Disease progres-
sion and response to therapy may also be
ascertained by a multicomponent analysis of
exosomes.

OUTLOOK: The study of exosomes is an active
area of research. Ongoing technological and
experimental advances are likely to yield valu-
able information regarding their heterogeneity
and biological function(s), as well as enhance
our ability to harness their therapeutic and
diagnostic potential. As we developmore stan-
dardizedpurification and analytical procedures
for the study of exosomes, this will likely reveal
their functional heterogeneity. Nonetheless,
functional readouts using EVs enriched for
exosomes have already provided new insights
into their contribution to various diseases.
New geneticmousemodels with the ability for
de novo or induced generation of cell-specific
exosomes in health and disease will likely show
the causal role of exosomes in cell-to-cell com-
munication locally and between organs.Whether
exosome generation and content change with
age needs investigation, and such information
could offer new insights into tissue senes-
cence, organ deterioration, and programmed
or premature aging. Whether EVs and/or exo-
somes preceded the first emergence of the
single-cell organism on the planet is tempt-
ing to speculate, and focused bioelectric and
biochemical experiments in the future could
reveal their cell-independent biological func-
tions. Single-exosome identification and iso-
lation and cryoelectron microscopy analyses
have the potential to substantially improve
our understanding of the basic biology of exo-
somes and their use in applied science and
technology. Such knowledge will inform the
therapeutic potential of exosomes for various
diseases, including cancer and neurodegener-
ative diseases.▪
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Hallmarks of exosomes

Exosomes: A cell-to-cell transit system in the human body with pleiotropic functions. Exosomes
are extracellular vesicles generated by all cells and they carry nucleic acids, proteins, lipids, and metabolites.
They are mediators of near and long-distance intercellular communication in health and disease and
affect various aspects of cell biology.
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The study of extracellular vesicles (EVs) has the potential to identify unknown cellular and molecular
mechanisms in intercellular communication and in organ homeostasis and disease. Exosomes, with an
average diameter of ~100 nanometers, are a subset of EVs. The biogenesis of exosomes involves
their origin in endosomes, and subsequent interactions with other intracellular vesicles and organelles
generate the final content of the exosomes. Their diverse constituents include nucleic acids, proteins,
lipids, amino acids, and metabolites, which can reflect their cell of origin. In various diseases, exosomes
offer a window into altered cellular or tissue states, and their detection in biological fluids potentially
offers a multicomponent diagnostic readout. The efficient exchange of cellular components through
exosomes can inform their applied use in designing exosome-based therapeutics.

T
he study of extracellular vesicles (EVs)
and the mechanisms that govern their
generation and function(s) in multicel-
lular organisms spans from physiologi-
cal tissue regulation to pathogenic injury

and organ remodeling. Research in this field is
stimulated by the potential of EVs as diagnos-
tic and therapeutic tools for the treatment of
various diseases, including neurodegenera-
tion, cardiovascular dysfunction, and cancer.
Increasingly, EV research is aimed at classifi-
cation of EVs, isolationmethods, and cataloging
their putative functions in disease progres-
sion and therapy (1–5). Current characteri-
zation of biological activities of EVs has largely
relied on tissue culture generated (and possi-
bly amplified), nonphysiological readouts, as
well as diverse EV isolation methods, which
require further refinement (6, 7). Therefore, it
remains unclear whether some of the pur-
ported properties of EVs are physiologically
relevant in whole organisms in health or
disease. Nonetheless, the production of EVs
by cells appears to extend beyond a simple
protein-recycling function, as initially reported
for the transferrin receptor in reticulocyte ma-
turation (8, 9), and varies according to cellular
origin, metabolic status, and environment of
the cells. EV research remains restricted by
current experimental limitations in single-
particle detection and isolation, and the in-
ability to image and track exosomes in vivo at
a reliable resolution. Despite such experimen-
tal caveats, exciting discoveries have emerged.
The utility of EVs as liquid biopsies is partic-
ularly promising because of their presence in

all biological fluids and their potential for
multicomponent analyses (2).
Although the classification of EVs is con-

tinuously evolving (1), they generally fall into
twomajor categories, ectosomes and exosomes
(10) (Fig. 1). Ectosomes are vesicles generated
by the direct outward budding of the plasma
membrane, which produces microvesicles, mi-
croparticles, and large vesicles in the size range
of ~50 nm to 1 mm in diameter. By contrast,
exosomes are of endosomal origin and in a size
range of ~40 to 160 nm in diameter (~100 nm
on average). In this review, we focus on exo-
somes and discuss other EVs to offer contrast
and comparisonwhen relevant. Critically, chal-
lenges remain when establishing purification
and analytical procedures for the study of
exosomes, possibly resulting in aheterogeneous
population of EVs that include exosomes. As
such, some of the findings discussed may re-
flect those of exosomes mixed with other EVs.
Exosomes are of particular interest in biology
because their creation involves a distinct intra-
cellular regulatory process that likely deter-
mines their composition, and possibly their
function(s), once secreted into the extracellu-
lar space (2, 6, 11). It is important to recognize
that exosome isolationmethods are constantly
evolving, and current biological markers may
only recognize a subpopulation of exosomes
with specific contents (1, 7, 12, 13). Therefore,
some findings will need to be refined as new
technology is embraced.

The biogenesis of exosomes

Exosomes are generated in a process that
involves double invagination of the plasma
membrane and the formation of intracellular
multivesicular bodies (MVBs) containing in-
traluminal vesicles (ILVs). ILVs are ultimate-
ly secreted as exosomes with a size range of
~40 to 160 nm in diameter through MVB fu-

sion to the plasmamembrane and exocytosis
(Fig. 1). The first invagination of the plasma
membrane forms a cup-shaped structure that
includes cell-surface proteins and soluble pro-
teins associated with the extracellular milieu
(Fig. 2). This leads to the de novo formation of
an early-sorting endosome (ESE) and in some
cases may directly merge with a preexisting
ESE. The trans-Golgi network and endoplasmic
reticulum can also contribute to the formation
and the content of the ESE (2, 4–6, 13, 14). ESEs
can mature into late-sorting endosomes (LSEs)
and eventually generate MVBs, which are also
called multivesicular endosomes. MVBs form
by inward invagination of the endosomal lim-
iting membrane (that is, double invagination of
the plasma membrane). This process results
in MVBs containing several ILVs (future exo-
somes). The MVB can either fuse with lyso-
somes or autophagosomes to be degraded or
fuse with the plasmamembrane to release the
contained ILVs as exosomes (3, 4).
The Ras-related protein GTPase Rab, Sytenin-

1, TSG101 (tumor susceptibility gene 101),
ALIX (apoptosis-linked gene 2-interacting
protein X), syndecan-1, ESCRT (endosomal
sorting complexes required for transport) pro-
teins, phospholipids, tetraspanins, ceramides,
sphingomyelinases, and SNARE [soluble N-
ethylmaleimide–sensitive factor (NSF) attach-
ment protein receptor] complex proteins are
involved in the origin and biogenesis process of
exosomes, although their precise rate-limiting
actions and functions in exosome biogenesis
require further in-depth exploration, espe-
cially in vivo (6, 11, 15). An intersection of the
exosome biogenesis pathway with other mo-
lecular pathways associated with the traffick-
ing of intracellular vesicles has confounded
the interpretation of functional studies. Spe-
cifically, loss- or gain-of-function experiments
involving Rab and ESCRT proteins likely in-
terfere with other distinct vesicular activities
within cells, such as autophagy and lysosomal
pathways, and Golgi apparatus–derived vesicle
trafficking, which may exert indirect effects on
exosome biogenesis. Distinct cell types, culture
conditions, and genomic health of the cellsmay
also favor or dispense some of the putative key
regulators of exosome biogenesis in vivo (6).
The potential inconsistencies in identifying
regulatory elements associated with exosome
biogenesis could also result from different
methods for exosome production, enrichment,
and concentration (13).
Computing the rate of exosome production

is challenged by the dynamic process associ-
ated with the de novo production and uptake
of external exosomes by any given cell type. A
study using time-lapse monitoring of single
human cells cultured in a platform that en-
abled tetraspanin antibody capture of shed
exosomes indicated distinct rates of net exo-
some production by noncancerous versus
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cancerous breast epithelial cells. The breast
cancer cells shed lower numbers of exosomes
(~60 to 65 per cell per hour) compared with
tissue-matched, nontumorigenic cell line–
derived exosomes (16). In other studies, it has
been suggested that cancer cells secrete more
exosomes compared with normal cells from
the same or other tissues [reviewed in (2, 11)],
but such studies relied on different isolation

methods that maymeasure both exosomes and
ectosomes of similar size.

Exosome heterogeneity

The heterogeneity of exosomes is likely reflec-
tive of their size, content, functional impact
on recipient cells, and cellular origin (Fig. 1).
Size inequality could be due to uneven in-
vagination of the limiting membrane of the

MVB, resulting in distinct total content of fluid
and solids, or isolation methods that include
other EVs (6, 11, 15). Refined fractionation
methods involving EVs revealed that exosomes
may contain subpopulations defined by a dis-
tinct size range (17). Size heterogeneity can
also result in different amounts of exosomal
content. The microenvironment and the in-
herent biology of the cells may influence the
content of the exosomes and their biological
markers. Exosomes can contain membrane
proteins, cytosolic and nuclear proteins, extra-
cellularmatrix proteins,metabolites, andnucleic
acids, namelymRNA, noncoding RNA species,
and DNA (18–21) (Fig. 2). Although exosomal
cargo analyses require large pools of purified
exosomes, not all exosomes contain a similar
abundance of a given cargo, as observed, for
example, with miRNA exosomal cargo (22).
Proteomic analyses of EVs have revealed the
marker heterogeneity of exosomes, cautioning
their utility in experimental design usingmarker-
determined purification methodologies (23).
Nonetheless, the proteome of breast cancer cells
and their exosomes can show whether the cell
of origin was epithelial like ormesenchymal like
(24), and distinct proteins and nucleic acids
are enriched in exosomes compared with their
cell of origin, suggesting a specific protein-sorting
mechanismassociatedwith exosomebiogenesis
and/or content loading.
The effects of exosomes on recipient cells can

be different because of their varied expression
of cell surface receptors, and such functional
heterogeneity can result in one set of exosomes
inducing cell survival, another set inducing
apoptosis, and a different set inducing immuno-
modulation, etc., in different target cell types
(Fig. 1). Heterogeneity can also be based on the
organ and tissue of origin of the exosomes, in-
cluding whether they are from cancer cells (24),
giving them distinct properties such as tropism
to certain organs and uptake by specific cell types.
A combination of all of these features would
have the potential to give rise to a higher order
of complexity and heterogeneity of exosomes.

Intercellular communication

The questions surrounding the function of
exosomes are largely focused on understand-
ing the fate of their constituents and the pheno-
typic andmolecular alterations that they induce
on recipient cells in cell-culture systems. Exo-
some uptake and secretion pathways may in-
tersect, resulting in net production of amixed
population of exosomes over time for any
given cell that is composed of both endogenously
produced and recycled exosomes (Fig. 3). The
distinct mechanisms and pathways associated
with exosome uptake (6, 25, 26), and the puta-
tive specificity of exosomes for certain cell types,
add complexity to the function of exosomes
in intercellular communication. For example,
oncogenic signals induced by mutant KRAS
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Fig. 1. Identity and the heterogeneity of extracellular vesicles and exosomes. The two major categories
of EVs are ectosomes and exosomes. Ectosomes are released through plasma membrane budding and
are in the size range of ~50 nm to 1 mm. Exosomes originate from the endosomal pathway by the
formation of the ESEs, LSEs, and ultimately MVBs, which contain ILVs. When MVBs fuse with the plasma
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expression promote exosome uptake by macro-
pinocytosis in human pancreatic cancer cells
(27, 28). Human melanoma cells uptake exo-
somal cargo through their fusion with the
plasmamembrane (29), and the neurosecretory
PC12 cells (derived from rat adrenal medullary
tumor)more readily rely on clathrin-dependent
endocytosis for uptake (30). It is unknown
whether a different mode of exosome uptake
by recipient cells results in distinct localiza-
tion, degradation, and/or functional outcomes
of the exosomal constituents. Moreover, it re-
mains poorly understood whether adminis-
tration of externally generated exosomes from
different cell types intomice results in different
organ tropism and/or retention comparedwith

physiological tropism by de novo–produced
exosomes (28, 31–35). It is possible that the
“turnover rate” for internalized exosomal cargo
varies depending on the nature of the cargo
and the recipient cell’s metabolic status that
regulates uptake of extracellular molecules and
vesicles.
To track intercellular exchange of exosomes

under physiological conditions, in vivo experi-
ments involving various genetic strategies in
mice were explored (36–38). These studies dem-
onstrate that exosomes can deliver mRNA to
a recipient cell on rare occasions. Such rare
events were enhanced by the activation and
expansion of exosome-producing immune
cells in mouse models of acute inflammation

(peritonitis) or chronic inflammation (subcuta-
neous tumor) (36). Therapeutic interventions
such as chemotherapy could also influence
exosome uptake and subsequent biological
responses of tumors. For example, inhibiting a
proton pump or altering cellular pH in mela-
noma cells limits exosome uptake (29).
Although it is not surprising that the pro-

teome of the exosomes reflects the proteome
of the originating cell, exosome protein cargo
from cancer cells can be altered. For example,
proteomic studies have revealed that oncogenic
alteration, such as constitutively active expres-
sion of EGFRvIII (epidermal growth factor re-
ceptor variant III) in glioblastoma cells, yields
exosomes with a protein cargo specifically
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Fig. 2. Biogenesis and identification of exosomes.
Fluid and extracellular constituents such as
proteins, lipids, metabolites, small molecules, and
ions can enter cells, along with cell surface proteins,
through endocytosis and plasma membrane invagi-
nation. The resulting plasma membrane bud forma-
tion in the luminal side of the cell presents with
outside-in plasma membrane orientation. This
budding process leads to the formation of ESEs or
possible fusion of the bud with ESEs preformed by
the constituents of the endoplasmic reticulum (ER),
trans-Golgi network (TGN), and mitochondria. The
ESEs could also fuse with the ER and TGN, possibly
explaining how the endocytic cargo reaches them.
Some of the ESEs can therefore contain membrane
and luminal constituents that can represent diverse
origins. ESEs give rise to LSEs. Second invagination
in the LSE leads to the generation of ILVs, and this
step can lead to further modification of the cargo of
the future exosomes, with cytoplasmic constituents
entering the newly forming ILV. As part of the
formation of ILVs, proteins (that were originally on
the cell surface) could be distinctly distributed
among ILVs. Depending on the invagination volume,
the process could give rise to ILVs of different sizes
with distinct content. LSEs give rise to MVBs with
defined collection of ILVs (future exosomes). MVBs
can fuse with autophagosomes, and ultimately the
contents can undergo degradation in the lysosomes.
The degradation products could be recycled by the cells.
MVBs can also directly fuse with lysosomes for
degradation. MVBs that do not follow this trajectory can
be transported to the plasma membrane through the
cytoskeletal and microtubule network of the cell and
dock on the luminal side of the plasma membrane with
the help of MVB-docking proteins. Exocytosis follows
and results in the release of the exosomes with a similar
lipid bilayer orientation as the plasmamembrane. Several
proteins are implicated in exosome biogenesis and
include Rab GTPases, ESCRT proteins (see text), as well
as others that are also used as markers for exosomes
(CD9, CD81, CD63, flotillin, TSG101, ceramide, and Alix).
Exosome surface proteins include tetraspanins, integrins,
immunomodulatory proteins, and more. Exosomes can
contain different types of cell surface proteins, intracellular
protein, RNA, DNA, amino acids, and metabolites.
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enriched in many proinvasive molecules (39).
Neural stem cells challenged with inflamma-
tory cytokines produce exosomes with IFNg
(interferon gamma)–bound-IFNGR1 (interferon
gamma receptor 1), and these specifically acti-
vate STAT1 (signal transducer and activator
of transcription 1) signaling in recipient cells
that also express IFNGR1 (40). These results
support the idea that proteins are sorted into
exosomes and can selectively induce specific
signals in recipient cells to regulate processes
such as those seen in development, immune
responses, and disease.

Mammalian reproduction and development

Human reproduction, pregnancy, and embry-
onic development require precise, finely tuned,
and dynamic intercellular communication.
Semen, amniotic fluid, blood, and breast milk
all contain exosomes with putative functions.
Seminal plasmaexosomeshave been implicated
in sperm maturation (41). Molecular profiling
indicates that themicroRNAs let-7a, let-7b, miR-
148a, miR-375, and miR-99a are enriched in
seminal plasma-derived exosomes frommulti-
ple human donors (42). These miRNAs are im-
plicated in the expression of interleukins (IL-10

and IL-13), raising the possibility that exosomes
play a role in genitalia-resident immunity (42).
Seminal plasma-derived exosomes also inhibit
HIV-1 infection (43, 44), possibly by blocking
HIV early protein transcriptional activator (Tat)
recruitment and subsequent transcription of
HIV-1 (45) (Fig. 4).
Exosomes may also help to prevent infec-

tion of the placenta by delivery of exosomal
miRNA (chromosome 19 miRNA cluster, C19MC)
from specialized cells of the placenta (troph-
oblasts) to nonplacental cells to induce au-
tophagy and defense against viral infections
such as poliovirus, human cytomegalovirus,
and herpes simplex virus 1 infection (46). In
the blood plasma of pregnant women, the
exosomal miRNA and protein cargo change
with respect to gestational age and when com-
pared with preterm birth (47, 48). Plasma-
derived exosomes dynamically evolve during
pregnancy in mice as well, and gestation-
stage specific exosomes are functionally linked
to labor and delivery (49). Specifically, late-
gestation plasma-derived exosomes induce
preterm birth in near-term pregnancies in
mice but do not affect pregnancies at an
earlier stage of gestation (49).

In breast milk, exosomes seem to promote
postnatal health and growth. Breast milk–
derivedexosomes containmiRNAswith immune-
related functions (50) and enhance the number
of peripheral blood–derived T-regulatory cells
ex vivo, possibly to regulate immune tolerance
(51). Although breast milk–derived exosomes
have been shown to promote the proliferation
of porcine intestinal epithelial cells in culture
conditions and the mouse intestinal tract in
vivo (52), it remains unclear to what extent,
if any, the transfer of nucleic acids and other
exosomal cargos is preserved after ingestion,
having to overcome digestive enzymes and
uptake in the intestinal epithelium. The impact
of different routes of administration on tissue
uptake of exosomeswill likely influence poten-
tial therapeutic strategies (53).

Immune responses and infection

The role of exosomes in immune responses has
been widely documented (54–56), although
it should be noted that no severe immune
reaction was observed in mice repeatedly ad-
ministered with a relatively low dose of mouse
or human cell–derived exosomes for extended
periods of time (28, 35, 57). Whole-blood and
plasma transfusions, which have been performed
for >50 years, do not appear to be associated
with potential EV-mediated immune reactions
despite no effort tomatchHLA (human leuko-
cyte antigen) types and the infusion of trillions
of EVs including exosomes. Exogenous admin-
istration and endogenous secretion of exosomes
may thus elicit immune responses in a context-
and dose-dependentmanner and this remains
to be elucidated.
Recent experiments with engineered exo-

somes have nonetheless indicated a function
of exosomes in eliciting adaptive and innate
immune reactions, supporting their utility for
therapy development and a potential role in
coordinating immune reactions in response to
infectious agents or cancer (Fig. 5). The func-
tion of exosomes in immune regulation is likely
due to the transfer and presentation of anti-
genic peptides, delivery of DNA-inducing cGAS-
STING (cyclic GMP-AMP synthase stimulator
of interferon genes) signaling in recipient
cells (an immune pathway wherein sensing
of cytosolic DNA triggers the expression of in-
flammatory genes and a type I IFN response),
gene-expression manipulation by exosomal
miRNA, and induction of different signaling
pathways by surface ligands present on the
exosomes.
Exosomes fromantigen-presentingcells (APCs)

carry p-MHC-II [major histocompatibility com-
plex II with antigenic peptide (p)] and costi-
mulatory signals, and directly present the peptide
antigen to specific T cells to induce their acti-
vation. However, for reasons that remain to be
elucidated, T cell stimulation by exosomes is
less effective than that by APCs (58–60). In
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mice, tumor eradication and growth delaywere
observed with a single intradermal injection
of APC-derived exosomes with MHC-II loaded
with tumor peptide (60). The potency and dur-
ability of the observed CD8+ cytotoxic T cell–
mediated antitumor response also implied
indirect antigen presentation because of the
transfer of the antigenic peptide on exosomes
to the APCs, which in turn primenaïve T and/or
B cells for activation. Immature mouse den-
dritic cells activated by exosome-derived immu-
nogenic peptides indirectly activate APCs and
induce specific CD4+ T cell proliferation (61).
Exosomes shed by human dendritic cells, re-
gardless of their maturity, promote a T helper
1 response (IFNg production) in culture (62).
Exosomes from ovalbumin (OVA)–pulsed den-
dritic cells were more efficient in eliciting anti-
gen (OVA)-specific CD8+ T cell activation than
weremicrovesicles (63), supporting a potential
molecular intersection between exosome bio-
genesis (which is distinct from microvesicle
biogenesis, as discussed above) and antigen
presentation. The role of exosomes in antigen
presentation was also explored in the context
of bacterial infection (with a focus on Myco-
bacterium tuberculosis andHelicobacter pylori),
wherein exosomesmay enhance antibacterial
immune responses by promoting bacterial an-
tigen presentation from macrophage-derived
exosomes (64). This could subsequently influ-
ence the adaptive immune response (64); the
production of IFNa and IFNg, tumor necrosis
factor a (TNFa), and IL-containing exosomes
from macrophages to promote dendritic cell
maturation and CD4+ and CD8+ T cell activa-
tion (65); and the regulation of macrophage IL
expression (66). Bacteria-derived EVs have also
been identified in humans and have implica-
tions in health and disease (67, 68), and given
the emerging role of exosomes in antigen pre-
sentation in the context of bacterial infection,

it is plausible that exosomes would play a role
in microbiota-associated inflammation.
The nucleic acid exosomal cargo, namelyDNA

andmiRNA, has been implicated in regulating
innate and adaptive immune responses. The
DNA of intracellular bacteria (e.g., Listeria,
Legionella pneumophila, and Franciscella
tularensis) are sorted into exosomes with the
capacity to stimulate cGAS-STING signaling in
nearby cells, effectively activating innate im-
mune responses.However, in the case ofListeria,
this happens at the expense of suppressing
T cells and thus lowering antibacterial defense
(69). By contrast, in the context of M. tubercu-
losis infection, bacterial RNA shed from infected
macrophages enhances host immunity by elicit-
ing the RNA-sensing pathway and promoting
phagosome maturation in recipient macro-
phages (70). Although the functional role of
exosomes in immune responses against fungal
and parasitic infections is largely unknown,
some studies related to parasite-derived exo-
somes have indicated that exosomes may partic-
ipate in disease virulence (71, 72). Specifically, the
malaria-causing parasite Plasmodium falciparum
was shown to shed its DNA and small RNAs
into the exosomes from the red blood cells
that it infects (73). Instead of enhancing the
STING-dependent antipathogen immune re-
sponse, human monocytes that take up exo-
somes containing the parasitic DNAmay elicit
STING-dependentDNAsensing as a decoy strat-
egy to enhance parasite survival (73).
The role of exosomal DNA in the immune

response was also shown to be functionally re-
levant to cancer progression. Adaptive immune
responses elicited by exosomes include the ac-
tivation of dendritic cells with the uptake of
breast cancer cell–derived exosomal genomic
DNA and activation of cGAS-STING signaling
and antitumor response inmice (74). In vitro,
after T cell contact, the priming of dendritic

cells (immune instruction that changes the activ-
ity of dendritic cells to enhance their response
to future stimulation) is also associated with the
uptake of exosomal genomic andmitochondrial
DNA (mtDNA) fromT cells, inducing type I IFN
production by cGAS-STING signaling (75). Al-
though exosomal DNAuptake by recipient cells
alters their signaling, exosome biogenesis may
also play a role in clearing cytoplasmic DNA
and in preventing activation of the cytosolic
DNA-sensing machinery and reactive oxygen
species–dependent DNAdamage response (76).
In the context of cancer, this exosomal DNA
shedding may be beneficial, such that inhibi-
tion of EGFR in cancer cells leads to increased
DNA in the exosomes from those cells and
could induce cGAS-STING signaling in dendritic
cells and contribute to overall suppression of
tumor growth (77). By contrast, the impact of
tumor exosomal DNA on inflammatory re-
sponses can indirectlyworsen cancer, and uptake
of tumor-derived exosomalDNAby circulating
neutrophils was shown to enhance the pro-
duction of tissue factor and IL-8, which play
a role in promoting tumor inflammation and
paraneoplastic events (thrombosis) (78).
Exosomes may also regulate the immune

response by influencing gene expression and
signaling pathways in recipient cells, principally
by the transfer of miRNAs. Exosomal miRNA
can exchange between dendritic cells and re-
press gene expression (79), and such exosome-
mediated intercellular communication may
influence dendritic cell maturation. Tumor-
derived exosomalmiR-212-3p down-regulates
the MHC-II transcription factor RFXAP (reg-
ulatory factor X associated protein) in dendritic
cells, possibly promoting immune evasion by
cancer cells (80). Tumor–derived exosomalmiR-
222-3p down-regulates SOCS3 (suppressor
of cytokine signaling 3) in monocytes, which
promotes STAT3-mediated M2 polarization
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Fig. 4. Exosomes in viral infection.
Exosomes can limit or promote viral
infection. Exosomal cargo such as
IFNa or APOBEC3G can suppress
infection by limiting viral replication or
enhancing antiviral immunity. Viruses
can also highjack the exosome
biogenesis machinery to promote viral
dissemination. Exosomes may serve
as a pseudoenvelope that enhances
viral entry by tetraspanins (CD81,
CD9) and PtSer interaction and uptake
into recipient cells and aid in evading
antiviral immunity. Cotransport of a
viral component (proteins and miRNA)
may also enhance infectivity.
Exosome-mediated transfer of viruses
may participate in viral genetic coop-
erativity and multiplicity of infection.
CMV, cytomegalovirus; HSV-1, herpes
simplex virus 1.
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Fig. 5. Regulation of
immune response by
exosomes. Exosomes
from distinct cellular
sources, including
immune cells (B cells and
dendritic cells), cancer
cells, epithelial, and
mesenchymal cells, shed
exosomes with cargos
that can influence the
proliferation and respec-
tive activity of recipient
cells of both the innate
and adaptive immune
system. CD4+ and CD8+

T cells [cytotoxic T cells
(CTL)] can be directly or
indirectly influenced by
exosomes, stimulating or
suppressing their prolifer-
ation and function(s).
PBMC, peripheral blood
mononuclear cell; X?,
other potential immuno-
modulatory proteins.
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of macrophages (81), possibly generating an
immunosuppressive microenvironment.
Modulation of immune responses by exo-

somes might also involve presentation of
immunoregulatory molecules such as PD-L1
(programmed cell death ligand 1) andFasL (Fas
cell surface death receptor ligand) on their
surface. PD-L1 on melanoma-derived exosomes
suppresses CD8+ T cell antitumor function
in vivo (82), and cancer cell–derived exosomes
block dendritic cell maturation and migration
in a PD-L1–dependent manner (83). Further,
cancer cell–derived PD-L1+ exosomes promote
T cell exhaustion in the draining lymph nodes
of tumor-bearingmice, promoting tumorgrowth
(84). FasL on melanoma or prostate cancer-
derived exosomes induces Fas-dependent
apoptosis of T cells (85, 86). In addition to exo-
somes, ligand-mediated signaling to T cells and
enzymatic activities associated with exosomes
derived frommultiple human cancer cell types
that express with CD39 (ectonucleoside tri-
phosphate diphosphohydrolase 1) and CD73
(5′ nuleotidase) result in 5′AMP-to-adenosine
conversion and adenosine signaling in T cells,
effectively limiting their activation in vitro
(87). Such actions could ultimately suppress
the adaptive immune response. By contrast,
mast cell–derived exosomes express MHC-II,
CD86, LFA-1 (lymphocyte function-associated
antigen 1), and ICAM-1 (intercellular adhe-
sion molecule 1) and induce the prolifera-
tion of B and T cells in vitro and in vivo (88).
Finally, cancer cell–derived exosomes engi-
neered to overexpress CD40L (CD40 ligand
or CD154, a costimulatory molecule on T cells
that binds to CD40 on APCs) promotes den-
dritic cell maturation, resulting in increased
proliferation of T cells and antitumor activity
in vivo (89).
The role of exosomes in the innate immune

response in cancer has also been reported. Exo-
somes from pancreatic cancer cells and plasma
of pancreatic cancer patients were shown to
limit complement-mediated lysis by acting as
decoys, thus decreasing cytotoxicity against
cancer cells (90). Exosomal HSP72 (heat shock
protein 70 kDa protein 1) can triggermyeloid-
derived suppressor cell activation by STAT3
(91), and exosomes derived from glioblastoma
stem cells induce a STAT3-mediated immuno-
suppressive (M2 type) switch of macrophage
phenotype (92), which would limit antitumoral
immune response in the tumor microenvi-
ronment. Exosomal miR-21 andmiR-29a from
cancer cells trigger human TLR8 and mouse
TLR7-mediated NF-kB (nuclear factor-kB) ac-
tivation inmacrophages and the production of
IL-6 and TNF-a to promote melanoma lung
metastasis and lung cancer in mice (93).
Exosomes not only play a role in immune

responses related to cancer cells, but also those
associated with infectious agents (bacteria, vi-
ruses, fungi, and parasites) (71, 94). Exosomes

might promote viral infection by enabling the
dissemination of viral components, and viruses
may highjack the exosome biogenesis pathway
for their survival [reviewed in (95)] (Fig. 4).
Viral infection associated with both enveloped
and nonenveloped virus is regulated by exo-
somes. The prototypic nonenveloped hepatitis
A and hepatitis E viruses (HAV and HEV, re-
spectively) can exist in a pseudoenveloped form
within exosomes (96, 97). The use of the exo-
some biogenesis machinery by viruses and
exosomes as a pseudoviral envelope evokes a
“Trojan horse” ploy to favor viral entry into the
cell, thereby enhancing infectivity (98). The
similarities—in size, density, molecular cargo,
and use of common components to harness
the cellular proteins and vesicle-trafficking
machinery—between enveloped retroviruses (in
particular, HIV-1/2) and exosomes support this
idea (98, 99). It has been proposed thatmultiple
virusesmaypackagewithin exosomes, a process
that would promote multiplicities of infection
and viral genetic cooperativity (99). Although
it remains unclear whether exosomes participate
in viral immune evasion by limiting detection
by neutralizing antibodies (96), they take part
in augmenting viral entry into cells through
the tetraspanins (transmembrane proteins)
CD81 and CD9 present on exosomes, possibly
by stabilizing the interaction of exosomes con-
taining virus particles with the cellular plasma
membrane and delivery of viral constituents
(100–103). Similarly, the phosphatidylserine
(PtdSer) receptor TIM-4 (T cell immunoglobulin
andmucin domain containing 4) on exosomes
may facilitate the cellular entry of HIV-1 because
of its PtdSer-rich envelope (104).
A postulated advantage of viruses using exo-

somes to exit cells could be to evade inflam-
mation and prevent virus-induced cell lysis.
Tumor-derived transfer of EGFR-associated exo-
somes to macrophages weakens their antiviral
response in a MEKK2 (mitogen-activated pro-
tein kinase kinase 2)- and IRF3 (interferon regu-
latory factor 3)–dependent manner, suggesting
that cancer may enhance viral infection (105).
Although exosomes shed from virus- infected
cells can promote infection (see above), exo-
somes also participate in antiviral immunity.
For example, IFNa-stimulated human macro-
phages shed exosomes that deliver antiviral
mediators, including the single-stranded DNA
cytidine deaminase APOBEC3G (apolipoprotein
BmRNA editing enzyme, catalytic polypeptide-
like 3G), protecting human hepatocytes from
HBV (hepatitis B virus) infection (106). Exoso-
mal APOBEC3G from exosomes also impairs
HIV-1 infection of T cells (107). The HIV-1 re-
ceptor CD4 on exosomes fromCD4+ T cells was
shown to reduce HIV-1 infection in vitro, and
the HIV-1 accessory protein Nef in infected
T cells reduced the expression of exosomal CD4,
effectively enhancing HIV-1 infection (108). Fu-
ture studies will hopefully further clarify the

opposing roles of exosomes in HIV-1 infection
in vivo.

Metabolic and cardiovascular diseases

Exosomes may play a role in the emergence of
metabolic diseases as well as in cardiovascular
fitness. They have been found to transfer metab-
olites and to facilitate intercellular commu-
nication through exosomal miRNA exchange
among pancreatic b-cells, adipose tissue, skel-
etalmuscles, and the liver ofmice and humans
(109). Reciprocal signaling between adipocytes
andmacrophagesmediated by exosomes in the
Leptin gene-knockout spontaneousmousemodel
of obesity implicates RBP4 (retinol binding
protein 4) in stimulation of macrophages and
insulin resistance (110). Obesemice fed a high-
fat diet display distinct circulating exosomal
miRNAs, which are sufficient to promote insulin
resistance in leanmice, possibly through down-
regulation of Ppara (peroxisome proliferator-
activated receptor alpha) expression in white
adipose tissue (111). Cachexia, a condition of se-
vere weight loss andmuscle wasting associated
with chronic disease such as cancer, as well
as other metabolic paraneoplastic syndromes
(e.g., new-onset diabetes in pancreatic cancer),
may be exacerbated by cancer cell–derived exo-
somal cargo acting on mouse and human adipo-
cytes and muscle cells (112). Adrenomedullin,
a peptide hormone inducing lipolysis, was found
in exosomes generated by human pancreatic
cancer cells and induced lipolysis inmouse and
human adipocytes (113) and inhibited insulin
secretion in rat andhuman islet cells (114).Mouse
andhuman cancer cell derived–exosomes,which
are rich in heat shock proteins (HSP70 and
HSP90), are also functionally implicated in
muscle wasting in mice (115). These findings
support that cancer cell–derived exosomes can
change the metabolism of noncancer cells, in-
cluding adipocytes and pancreatic islet cells,
thus functionally contributing to the develop-
ment of cachexia and paraneoplastic syndrome.
Exosomes from mouse and human cell cul-

ture supernatant (endothelial cells, cardiac
progenitor cells, cardiac fibroblasts, cardiomyo-
cytes) have been associated with metabolic
disease, including atherosclerosis, diabetes-
related cardiovascular disease (CVD), and meta-
bolic adaptation associated with heart failure
(116). The functions of exosomes in preventing
atherosclerosiswasdemonstrated inmice,where
platelet-derived exosomes reducedmacrophage
scavenger receptor CD36 expression and con-
sequently reduced the uptake of harmful chole-
sterol [oxidized low-density lipoprotein (LDL)]
(117). By contrast, human smooth muscle cell–
derived exosomes may promote thrombogen-
esis, as shown by in vitro assays (118). The use
of stem cell (bone marrow–derived stem cells
and embryonic stem cells)–derived exosomes
in cardiovascular protection (119) has emerged
as a potential therapeutic approach in mice
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and rats despite limited knowledge on how
exosomes potentiate these effects. Exosomal
microRNAs, including miR-19a, miR-21 [from
murine cardiac progenitor cells targetingPDCD4
(programmed cell death 4) in rat myoblasts in
vitro (120)], miR-22 [frommouse bonemarrow–
derived mesenchymal stromal cells (MSCs) tar-
geting MECP2 (methyl CpG binding protein 2)
in ischemic mouse heart (121)], and miR-21-5p
[from human bone marrow–derived MSCs tar-
geting SERCA2a (sarcoendoplasmic reticulum
Ca2+) adenosine triphosphatase (ATPase) and
L-type calcium channels in human cardiacmyo-
cytes derived frompluripotent stem cells in vitro
(122)], mediate cardiovascular protective ef-
fects, possibly by limiting cardiomyocyte apop-
tosis, promoting mitochondrial function, and
preserving cardiac contractility.

Neurodegeneration

The intersection between exosomal biogenesis
and the regulation of secretory vesicles in neu-
ronal cells offered new insight into the putative
connection between exosomes and the patho-
genesis of neurodegenerative diseases. Exosomes
may promote or limit aggregation of unfolded
and abnormally folded proteins in the brain
(123–128). Exosomes could participate in the
clearing of misfolded proteins, thereby exert-
ing detoxifying and neuroprotective functions,
or participate in the propagation and aggre-
gation of misfolded proteins, effectively pro-
moting the “infectivity” of protein aggregates
and contributing to disease progression. Such
opposing functions of exosomes might not be
mutually exclusive and are described below.
Pharmacological blocking using GW4869

(which inhibits inward budding of MVBs) or
enhancement of exosome production using
monensin (which increases intracellular Ca2+

andMVB generation) results in a decrease or
increase, respectively, of the transmission of
the infectious prion protein PrPsc, which is
associated with Creutzfeldt–Jakob disease in
vitro (129). Both Tau and Ab (b-amyloid gen-
erated by the cleavage of amyloid precursor
protein [APP]), implicated in Alzheimer’s dis-
ease, are found in exosomes, including patients’
cerebrospinal fluid–derived exosomes (Tau),
mouse microglial cell culture supernatant-
derived exosomes (Tau), and exosomes of super-
natant from the culture of mouse and human
cell lines (Ab). Pathological propagation of Tau
aggregation by exosomes was noted in vitro
and in vivo (130, 131). Using a simple circuit of
neurons in a microfluidic device, exosomal
transfer of Tau between neurons was proposed
to include takeover of the endosomal pathway
(131). The cleavage of APPwas observed in early
endosomes, and Ab accumulated in MVBs of
N2a (mouse neuroblastoma) and HeLa cells
modified to express fluorescent APP (132); how-
ever, whether exosomes promote neurotoxic Ab
oligomerization in vivo is unknown.

The exosome biogenesis machinery may also
be neuroprotective. Exosomesmay impair neu-
rotoxic oligomer formation (133) or exosomes
may carry themout of cells (134).More recently,
exosomal secretion of Ab from the brains of
mice engineered to overexpress APP was im-
plicated in the initiation and propagation of
toxic amyloid. This process involves the deregu-
lation of ECE1/2 (endothelin-converting en-
zyme 1/2), effectively resulting in an increase
in oligomerized Ab in exosomes from the brains
of APP-transgenic mice (135).
Similar observations were made in distinct

proteinopathies such as Parkinson’s disease
(PD) and amyotrophic lateral sclerosis (ALS).
The pathological protein a-synuclein is found
in cerebrospinal fluid–derived exosomes of pa-
tients with PD or dementia with Lewy bodies
(136), and the exosome biogenesis machinery
is implicated in the accumulation a-synuclein,
with a-synuclein downregulating ESCRT and
limiting its intracellular degradation (137).
SOD1 (superoxide dismutase 1) and TDP-43
(transactive response DNA binding protein
43 kDa), two misfolded proteins associated with
ALS, have been identified in exosomes (138–140).
Exosomes containing SOD1 frommouse astro-
cytes resulted in the death of mouse spinal
cord–derived motor neurons in culture (138),
mutant SOD1 could be transferred between
human mesenchymal cells in vitro (139), and
TDP-43 was found in exosomes from the cul-
ture supernatant ofmouseneuroblast cells (140).
However, in vivo suppression of exosome secre-
tion using GW4869 in TDP-43A325T-transgenic
mice was detrimental because this appeared
to limit the clearance of pathological TDP-43
fromneurons (140). Although exosomes contain-
ing neurotoxic proteins could be transferred to
distinct cell types in vitro (see above), possibly
promoting disease progression, it remains un-
known whether exosome-mediated exchange
of such proteins affects—either positively or
negatively—disease progression in vivo.
Although the function of exosomes in neuro-

degenerative disorders has focused on exosome
control of misfolded protein accumulation,
nucleic acids and other constituents may be
implicated in worsening or ameliorating other
neurological disorders. In a study evaluating
the serum-derived exosomes of children with
autism spectrum disorder (ASD), mtDNA exo-
somal cargo was proposed to illicit microglia
IL-1b secretion, possibly contributing to the
inflammation associated with ASD (141). The
role of exosomes in the pathophysiology of
neurodegenerative disorder and ASD requires
more study, but this has not hindered efforts to
use them in therapy development. Such effort
is largely encouraged by the intrinsic proper-
ties of exosomes to efficiently pass through the
blood–brain barrier, a vascular network func-
tioning as a selective filter to keep drugs or
toxins from reaching the brain (28, 142–144).

Cancer
The study of exosomes in cancer has progressed
at a rapid pace comparedwith research into their
role in other diseases (2, 145), and exosomes
have been associated with several hallmark
features of cancer (146). Exosomes influence
neoplasia, tumor growth andmetastasis, para-
neoplastic syndromes, and resistance to therapy.
The role of exosomes in cancer progression
is likely dynamic and specific to cancer type,
genetics, and stage.
Exosomes may induce or promote neoplasia.

Exosomes from pancreatic cancer cells were
shown to initiate cell transformation by induc-
ingmutations inNIH/3T3 recipient cells (147).
Exosomes derived from breast cancer and pro-
state cancer cells induce neoplasia through
transfer of their miRNA cargo (148, 149). miR-
125b, miR-130, miR-155, as well as HRas and
KrasmRNAs in exosomes from prostate cancer
cells, participate in neoplastic reprogramming
and tumor formation of adipose stem cells
(149). The plasticity of cancer cells may also be
attributed in part to exosomes, with exosomal
miR-200 from metastatic breast cancer cells
enhancing the epithelial to mesenchymal tran-
sition (EMT) andmetastasis of otherwiseweakly
metastatic breast cancer cells (150). Although
more work is needed to decipher the rate-
limiting role of exosomes in neoplasia and EMT,
research has focused on the exchange of exo-
somal cargo between cancer cells and stromal
cells in the tumor microenvironment and on
defining the functional outcome of such ex-
change on tumor growth andmetastasis. These
studies have explored cancer in mousemodels
and often rely on exogenously administered
exosomes in mice.
In most studies, the stromal cell recipients

of cancer cell–derived exosomes are cancer-
associated fibroblasts (CAFs) and immune cells,
which dynamically regulate one another in the
tumor microenvironment. Distinct cancer cell–
derived exosomal cargo, such as nucleic acids,
signaling proteins, and metabolites, can exert
protumorigenic effects on stromal cells. For
example, breast cancer exosome–derivedmiR-
122 suppresses pyruvate kinase and subsequent
glucose uptake in the lungs, which promotes
metastasis (151). Although RNA shielded by
proteins prevents their recognition as path-
ological RNAs that would otherwise elicit in-
flammatory responses, breast cancer cells
induce the accumulation of unshieldedRN7SL1
(RNA component of signal recognition parti-
cle 7SL1) RNA in exosomes from CAFs, which
ultimately produces a proinflammatory re-
sponse when delivered to immune cells and
results in increased tumor growth andmetas-
tasis in mice (152).
Examples of exosomes from cancer cells

eliciting a parenchymal signaling response at
metastatic sites, effectively remodeling distant
microenvironments to enhancemetastasis, have
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been reported in multiple cancer types. For
example, TGFb (transforming growth factor-b)
expressed on the surface of cancer cell–derived
exosomes induces fibroblast activation by gain
of aSMA (a-smooth muscle actin) and FGF2
(fibroblast growth factor 2) expression (153).
The recruitment of bone marrow progenitor
cells and macrophages to metastatic sites by
cancer cell–derived exosomeshas been reported
inmelanoma (154) and pancreatic cancer (155)
and implicated inmetastasis. PEDF (pigment
epithelium-derived factor) on the surface of
exosomes from mouse and human nonmeta-
static melanoma cells elicits the expansion of
patrollingmonocytes by NR4A1 (nuclear recep-
tor subfamily 4 group A member 1) induction,
which suppresses metastasis in the lungs of
mice (156). Cancer cell–derived exosomes are
also proposed to play a role in organotropic
metastasis of breast and pancreatic cancers,
in part through integrin expression on exo-
somes and organ-specific proinflammatory
responses (157), and the delivery of exosomal
EGFR from gastric cancer cells to Kupffer cells
and hepatic stellate cells promotes liver-specific
metastasis through enhanced HGF (hepatocyte
growth factor) signaling in the liver (158).
These results are among the growing body of
evidence that support a complex exosome-
mediated cell-to-cell communication in the
tumor microenvironment.
A reciprocal exosome exchange from the

stroma to cancer cells also modulates cancer
progressionandmetastasis. For example,mtDNA
in exosomes from CAFs induces oxidative phos-
phorylation (with expressionofmtRNA) inbreast
cancer cells, promoting their survival and exit
frommetabolic dormancy inmice (159). Another
example of stromal exosomal cargo promot-
ing cancer cell progression includes astrocyte-
derived miR-19a delivered to breast cancer cells,
which results in PTEN (phosphatase and tensin
homolog) suppression and contributed tometas-
tasis (160). Fibroblast-derived exosomes also
stimulate the migration of breast cancer cells by
inducingWnt-PCP (planar cell polarity) auto-
crine signaling (161). In addition, exosomes
encapsulate metabolites, including lactate,
glutamate, acetate, stearate, palmitate, andamino
acids (162, 163). 13C-labeled CAF–derived exo-
somes fuel the tricarboxylic acid cycle of recip-
ient cancer cells through metabolite transfer,
and exosomes from prostate and pancreatic
CAFs also replenish lipids in cancer cells, en-
hancing their fitness during tumor growth (163).
Plasma-derived exosomes containmetabolic en-
zymes, including hexokinase 1, pyruvate kinase,
lactate dehydrogenase, enolase, and glycer-
aldehyde 3-phospate dehydrogenase, and these
enzymes mediate the production of adenosine
5′-triphosphate (ATP) in exosomes (164). CAF-
derived exosomes suppress oxidative phos-
phorylation in prostate and pancreas cancer
cells by transferring miR-22, let7a, and miR-

125b, and promote glycolysis and glutamine-
dependent reductive carboxylation by metab-
olite transfer (163). The cancer stroma–derived
exosomes thus promote the metabolic fitness
of cancer cells growing as tumors in mice.
Exosomes have also been implicated in the

angiogenic and extracellular matrix remodel-
ing of the tumor microenvironment, a critical
step in tumor growth and metastatic dissemi-
nation. miR-105 from breast cancer cell–derived
exosomes suppresses endothelial tight junction
ZO-1 (zonular occludens 1) expression, resulting
in increased metastasis by impairing the integ-
rity of blood vessels and enhancing vascular
permeability (165). Exosomes fromhypoxic glio-
blastoma (GBM) cells induce proangiogenic
programming of endothelial cells and GBM
cell proliferation (166). Recent findings impli-
cate neutrophil-derived exosomes in proteolytic
degradation of the lung extracellular matrix
associated with chronic obstructive pulmo-
nary disease (167). In the context of cancer,
MMP1 (matrix metalloprotease 1) in exosomes
from ovarian cancer cells may play a role in
compromising themesothelium and promoting
peritoneal dissemination of cancer cells (168).
Exosomes shed by cancer cells are reported to

promote resistance to various chemotherapeutic
agents and antibodies. CD20+ exosomes from
B cell lymphoma act as a decoy for the binding
of anti-CD20 toB cells (169), andHER2 (human
epidermal growth factor receptor 2)–positive
exosomes from breast cancer cells act as a decoy
for anti-HER2 therapy (170), thus limiting their
activity toward cancer cells. CAF-derived exo-
somespromote colorectal cancer chemoresistance
by enhancing the growth of cancer stem cells
(171) and aid in the spread of drug-resistance
properties between cancer cell populations. This
process may be mediated by horizontal trans-
fer of exosomal miRNAs (observed in breast
cancer cells) (172). Specifically, an exosomal
long noncoding RNA (lncRNA) called lncARSR
[lncRNA activated in renal cell carcinoma (RCC)
with sunitinib resistance] binds competitively
to miR-34 and miR-449 and enhances expres-
sion of the tyrosine kinases AXL and MET,
overcoming the effect of sunitinib (173). When
tumors are treated with radiation therapy or
gamma secretase inhibitor, the expansion of
tumor-initiating cells resistant to radiation
therapy emerges through CAF-derived exoso-
mal RNA and transposable elements transfer
to cancer cells (174). CAF-derived exosomalmiR-21
binding to APAF1 (apoptotic protease acti-
vating factor 1) in ovarian cancer cells confers
resistance to paclitaxel (175), andmacrophage-
derived exosomal miR-385 induces cytidine de-
aminase activity in pancreatic cancer cells and
confers resistance to gemcitabine (176). Chemo-
therapy and radiation therapy could also di-
rectly affect exosome biogenesis and the content
of exosomes with potential implications on
therapy outcome (177). Radiation therapy en-

hances exosomal miR-7-5p production by can-
cer cells, which induces bystander cell auto-
phagy (178). These findings capture the distinct
role of exosomes in promoting resistance to
therapy, which results from exosomes directly
interacting with therapeutic agents and de-
creasing their efficacy against cancer cells, or
from exosomes (mainly from CAFs) changing
the transcriptome of cancer cells to promote
their survival.

Clinical applications of exosomes

The biology of exosomes in disease is still
emerging, and the number of studies address-
ing their utility in the diagnosis and treatment
of various pathologies has increased substan-
tially. This takes advantage of the complex cargo
of exosomes, allowing for a multicomponent
diagnostic window into disease detection and
monitoring. The characteristic properties of
exosomes in delivering functional cargos to
diseased cells also favor their use as therapeutic
vehicles, both at the basic and applied levels.

Diagnostic potential of exosomes

Exosomes are found in all biological fluids and
are secreted by all cells, rendering them attrac-
tive as minimally invasive liquid biopsies with
the potential for longitudinal sampling to follow
disease progression. Exosome biogenesis en-
ables the capture of a complex extracellular
and intracellular molecular cargo for compre-
hensive, multiparameter diagnostic testing
(Fig. 2). Surface proteins on exosomes also
facilitate their immune capture and enrich-
ment. Diseases that have been the focus of
diagnostic application of exosomes include
CVDs (116, 179), diseases affecting the central
nervous system (CNS) (180), and cancer (2, 181).
This effort is rapidly expanding to other dis-
eases involving the liver (182), kidney (183),
and lung (184).
Some studies have suggested that small

amounts of DNA can be found in exosomes
and that this DNA can be of value in detecting
cancer-associatedmutations in serum exosomes
(185–188). Although some studies suggest that
exosomes from human cell lines and serum do
not contain DNA, this remains contentious
and quantitative studies are required. One study
did not specify the quantity of exosomes used
in its analytical assays, leading to ambitious
conclusions (12). Should exosomal DNA reflect
larger fragments of DNA than circulating free
DNA, this may be beneficial in detecting mu-
tations, including in KRAS and TP53, in the
circulating exosomes of patients with pancre-
atic cancer (186–192). SpecificmiRNAsor groups
of miRNAs in exosomes may provide diagnostic
or prognostic potential in thedetection of cancer
(193). Oncogenic and tumor-suppressormiRNAs
in exosomes may be of high diagnostic value
because of their differential expression between
cancer cells andnormal cells, possibly enhancing
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their usefulness in early diagnosis (193). This
may be in part driven by the genomic land-
scape of cancer cells, with oncogenic Kras re-
ported to differentially enrich for miR-100 in
exosomes (194). Elevated circulating exosomal
miR-21 has been associated with glioblastomas
and pancreatic, colorectal, colon, liver, breast,
ovarian, and esophageal cancers, and elevated
urine-derived exosomal miR-21 has been asso-
ciated with bladder and prostate cancer [re-
viewed in (193, 195)]. Other exosomal oncogenic
microRNAs associated with multiple cancer
types include miR-155, the miR-17-92 cluster,
andmiR-1246 (196–199). These are noted to be
up-regulated in cancers of the brain, pancreas,
colorectum, colon, liver, breast, prostate, and
esophagus; in oral squamous cell cancer; as well
as in lymphoma and leukemia (193). Tumor-
suppressor miRNAs, including miR-146a and
miR-34a, are associatedwith liver, breast, colon,
pancreatic, and hematologic malignancies (193).
The combination of multiple microRNAs may
enhance the diagnostic and prognostic po-
tential of exosomal miRNA, and exosomal miR

signatures are continuously emerging in as-
sociation with cancer diagnosis and progno-
sis (195, 200–204). The diagnostic potential of
phosphoprotein in circulating exosomes from
breast cancer patients has also been reported
(205), as well as exosome surface protein analy-
ses (206). Several independent laboratories have
reported the utility of GPC1 (glypican 1)–positive
exosomes in the diagnosis of pancreatic, breast,
and colon cancer, with GPC1 being enriched
in cancer cell–derived exosomes, thus enabling
the detection of cancer and possibly response
to therapy (decrease in exosome numbers and
thus tumor burden) (207–216). Immunocapture
strategies are also under investigation to detect
circulating cancer exosomesusing surfaceCD147
expression in patients with colorectal cancer
(217). The relative PtdSer composition of exo-
somesmay also prove useful for the early detec-
tion of cancer in mice, as evaluated from the
serum of mice bearing breast or pancreatic tu-
mors (218). The possibility of combining pro-
tein, lipid, RNA, and miRNA exosomal cargos
in cancer diagnosis and prognostic evaluation

is currently being considered. A multicompo-
nent, combinatorial approach using a combi-
nation of markers that reflect distinct aspects
of disease-generating exosomes (e.g., metab-
olite, RNA, and protein content) could poten-
tially enhance the specificity and sensitivity of
an exosome-based diagnostic. Such efforts
would be more likely to identify collective
disease-specific changes, and lipid bilayer en-
capsulation could preserve enzyme-sensitive
molecular cargos.

Therapeutic potential of exosomes

Exosomes by themselves or as vehicles for the
delivery of drug payload(s) are being actively
explored as therapeutic agents (Fig. 6). In con-
trast to liposomes, injected exosomes are ef-
ficient at entering other cells and can deliver
a functional cargo with minimal immune
clearance upon exogenous administration in
mice (2, 181, 219–221). In addition, the ther-
apeutic application of exosomes is promising
because they have been demonstrated to be
well tolerated. Exosomes frommesenchymal
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Fig. 6. Cellular uptake
of therapeutic exo-
somes. Therapeutic
exosomes isolated
from dendritic cells,
fibroblasts, and mes-
enchymal cells can
impart specific effects
on the target cells,
including neoantigen
presentation, immuno-
modulation, and drug
payload delivery. The
impact of therapeutic
exosomes on target
cells may be controlled
by the different mech-
anisms of entry or
interaction. Entry of
intact exosomes
can involve receptor-
mediated endocytosis,
clathrin-coated pits,
lipid rafts, phagocyto-
sis, caveolae, and
macropinocytosis.
Entry of the content of
the exosomes, or
induction of signals by
exosomes, can involve
ligand-receptor–
induced intracellular
signaling or fusion to
deposit the contents of
the exosomes into the
cytoplasm. Examples of
therapeutic payload are
listed. Target cells include cancer cells, injured parenchymal cells, and immune cells. ASO, antisense oligonucleotide (a DNA oligo-binding RNA target).
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cells and epithelial cells do not induce toxicity
when repeatedly injected in mice (35, 57). MSC-
derived exosomes have been proposed to be
therapeutic by themselves (222), and the use of
MSC-derived exosomes in the treatment of a
patient with graft versus host disease showed
that repeated injections were well tolerated,
were not associatedwith substantial side effects,
and resulted in patient response (223).
Enrichment of exosomes on the basis of their

surface ligand presentation may also enable
the development of receptor-mediated tissue
targeting. Ligand enrichment on engineered
exosomesmay also be used to induce or inhibit
signaling events in recipient cells or to target
exosomes to specific cell types. For example,
av integrin-specific RGD (R, arginine; G, glycine;
D, aspartic acid)–modified peptide (amodified
tumor-homing peptide sequence that acts as a
recognition sequence for integrins) on imma-
ture dendritic cell–derived exosomes loaded
with doxorubicin showed therapeutic response
inmammary tumor–bearingmice (224). Other
chemotherapeutic compounds have also been
loaded into exosomes for cancer therapy and
tested in mice, and antitumor efficacy and
reduced toxicity were reported. For example,
macrophage-derived exosomes loaded with
paclitaxel induced lung tumor responses in
mice (225).
Building on the observation that exosomal

microRNAs effectively engage target mRNA
and suppress gene expression in recipient cells,
engineering of exosomes to deliver a specific
miRNA or small interfering RNA (siRNA) pay-
load has been developed for CNS diseases and
cancer. The exosomal RNAs may be protected
from degradation by blood-derived ribonu-
cleases (226) and, combined with superior sys-
temic retention comparedwith liposomes, this
could allow exosomes to exert their function at
distant sites. Preclinical testing with the deli-
very of miRNA or siRNA payload using exo-
somes has focused on anticancer treatment in
rodentswithmammary carcinoma (227), glioma
(228), and pancreatic cancer (28, 35), as well
as exploratory brain targeting. EGFR+ breast
cancer cell targeting using exosomes modified
with GE11 synthetic peptide and delivery of
microRNA let-7a to the cancer cells limited their
growth in vivo (227). MSC-derived exosomes
enabled miR-146b delivery and EGFR target-
ing in glioma in rats (228). Clinical-grade MSC-
derived exosomeswithKrasG12D siRNApayload
(iExosomes) have been used to treat pancre-
atic cancer in multiple animal models (28, 35).
These studies demonstrated that iExosomes,
administered as a single agent, yield a robust
increase in overall survival of mice and en-
able specific target engagement without any
obvious toxicity (28, 35). It was shown that
CD47 on exosomes results in a “don’t eat me”
signal, protecting them from phagocytosis and
limiting their clearance form circulation (28).

Further, macropinocytosis associated with can-
cer cells enhanced the entry of exogenously ad-
ministered iExosomes (28). Further development
of iExosome-based therapy has led to a phase I
clinical trial for the treatment of patients with
KrasG12D mutation–associated pancreatic cancer
(ClinicalTrials.gov identifier: NCT03608631).
In the context of neurological diseases, in-

tranasal administration of humanMSC–derived
exosomes resulted in amelioration of autistic-
like behavior in mice (BTBR mouse model),
although the precisemechanisms are unknown
(229). Intravenous administration of human
MSC–derived exosomes supports neuropro-
tection, as shown by a swine model of trau-
matic brain injury (230). RVG (rabies virus
glycoprotein)–modified dendritic cell–derived
exosomes with therapeutic Bace1-targeting
siRNA were intravenously administrated to
mice and the results showed suppression of
BACE1 expression in the brain, a potential target
for the treatment of Alzheimer’s disease (142).
RVG-modified exosomeswith siRNA targeting
a-synuclein reduced aggregate formation in
the brains of S129D a-synuclein mice and im-
proved brain pathology (143). Macrophage-
derived exosomes show the capacity to effectively
negotiate the blood–brain barrier and deliver
protein cargo (231), supporting the idea that
minimal modification of exosomes is required
to reach the brain parenchyma. Macrophage-
derived exosomes loaded with catalase showed
therapeutic benefit (neuroprotective effect) when
administered intranasally in amousemodel of
PD (232). Finally, blood-derivedexosomes loaded
with dopamine reached the brain after intra-
venous injection and, comparedwith free dopa-
mine, exhibited improved therapeutic efficacy
with decreased toxicity in a PD mouse model
(233). These findings support the potential of
therapeutic cargo in exosomes reaching clin-
ically challenging targets in the brain, in part
because of engineered exosomal cargo (siRNA)–
targeting genes for which there are no effective
pharmacological agents, and in part because
of their ability to pass through the blood-brain
barrier.
The role of exosomes in polarizing the

tumor immune microenvironment (discussed
above) has also prompted the design of thera-
peutic exosomes aimed at enhancing antitumor
immune responses (54). The antitumor action
of exosomes from dendritic cells potentially
caused by antigen presentation was tested in
a clinical setting (234). The engineered exo-
somes, called “dexosomes,”were obtained from
IFN-g–matured dendritic cells and loaded with
MART1 (melanoma antigen recognized by
T cells 1) peptides. Although the approach did
not yield a measurable cancer-specific T cell
response, dexosomes induced increased cyto-
lytic activity associated with natural killer cells
in patients with stage IIIB/IV non–small-cell
lung cancer (234). Only one among the 22 pa-

tients treated with dexosomes showed sub-
stantial liver toxicity, and 7 out of 22 patients
exhibited disease stabilization exceeding
4 months (234), although the response could
not be attributed specifically to the dexosomes.
Together, these early clinical data and the nu-
merous preclinical studies offer encouragement
for the development of exosomes as therapeu-
tic agents.

Conclusions

Although interesting exosome biology is being
unraveled largely using cell-culture systems,
there is a need for experiments using mouse
models and physiologically relevant experi-
mental conditions. Exosomes are reported to
induce molecular alteration in cells but the
question remains whether such observations
are of relevance because of the use of supra-
physiological numbers of cell culture–derived
exosomes, which often also need more precise
isolation and characterization procedures (1).
The need for precise and accurate character-
ization of exosomes will continue to grow as
our knowledge of the heterogeneity of EVs,
their cargo, and functions evolve. Exogenous
bolus doses of supraphysiological levels of exo-
somes into mice were associated with a pen-
etrant cellular phenotype, includingmodulation
of cancer progression (144, 151, 165, 235), in-
duction of neoplasia (148), and regeneration of
tissue (236). It remains unclear whether un-
manipulated, physiological levels of exosomes
exert regulatory homeostatic or pathological
functions (or neither) in vivo. The field is in
urgent need of animal models with which to
study biogenesis, trafficking, and cellular entry
of exosomes. Drosophila, C. elegans, Xenopus,
and zebrafish models may offer additional in-
sights (237–239).
Exosomes are generated by cells, but it is

tempting to wonder whether they are reminis-
cent of early primordial particles that contrib-
uted to the generation of the first protocell
(240, 241). It remains to be determinedwhether
exosomes can grow and divide and, given the
right environment, participate in signaling events
and autonomous biochemical reactions. The
similarities between exosomes and retrovirus
(242) also raise the possibility that exosomes
may have functioned as primordial particles
that preceded single-cell organisms.
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applications of exosome profiling for diagnostics and exosome-mediated delivery of therapeutics to target disease cells.
exosomes in disease, highlighting areas where more research is needed. They also discuss the potential clinical
neurodegeneration, and inflammatory diseases. In a Review, Kalluri and LeBleu discuss the biogenesis and function of 
communication through exosomes seems to be involved in the pathogenesis of various disorders, including cancer,
secrete them. They are taken up by distant cells, where they can affect cell function and behavior. Intercellular 

Exosomes are a type of extracellular vesicle that contain constituents (protein, DNA, and RNA) of the cells that
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