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Abstract
Approximately 70% of invasive breast cancers have some degree of dependence on the estrogen hormone for cell prolifera-
tion and growth. These tumors have estrogen and/or progesterone receptors (ER/PR+), generally referred to as hormone 
receptor positive (HR+) tumors, as indicated by the presence of positive staining and varying intensity levels of estrogen 
and/or progesterone receptors on immunohistochemistry. Therapies that inhibit ER signaling pathways, such as aromatase 
inhibitors (letrozole, anastrozole, exemestane), selective ER modulators (tamoxifen), and ER down-regulators (fulvestrant), 
are the mainstays of treatment for hormone-receptor-positive breast cancers. However, de novo or acquired resistance to ER 
targeted therapies is present in many tumors, leading to disease progression. The PI3K/AKT/mTOR pathway is implicated 
in sustaining endocrine resistance and has become the target of many new drugs for ER+ breast cancer. This article reviews 
the function of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway and the various classes of PI3K pathway inhibi-
tors that have been developed to disrupt this pathway signaling for the treatment of hormone-receptor-positive breast cancer.
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Key Points 

The PI3K/AKT/mTOR pathway plays a central role in 
cell growth, survival, and proliferation, and is implicated 
in tumorigenesis and the development of endocrine 
resistance in ER+ breast cancer.

ER+ breast cancer cells can develop genetic mutations, 
notably mutation of the PIK3CA gene, which cause 
hyperactivation of the PI3K/AKT/mTOR pathway and 
allow for cell survival and proliferation despite a state 
of estrogen deprivation and has led to the investigation 
of combined ER and PI3K inhibition as a therapeutic 
approach for ER+ breast cancers that progress on anti-
estrogen treatments.

A variety of PI3K pathway inhibitors divided into 
several classes have been developed and have shown 
significant clinical benefit with improved progression-
free survival in ER+ metastatic breast cancers that have 
progressed on previous lines of endocrine therapy.

1  Function of the PI3K/AKT/mTOR Pathway 
and Role in Tumorigenesis

The PI3K/AKT/mTOR pathway (Fig. 1) controls many 
important cellular functions including metabolism, 
growth, survival, and proliferation. This pathway transmits 
a wide variety of extracellular stimuli through a signaling 
cascade via phosphatidylinositol 3-kinases (PI3Ks) [1]. 
PI3Ks are lipid kinases that are divided into three dif-
ferent classes. Class I PI3Ks are heterodimers consisting 
of a p85 regulatory subunit and a p110 catalytic subunit 
(p110α, p110β, p110γ or p110δ). This class of PI3Ks is 
the most studied and is clearly implicated in oncogen-
esis and tumor growth [1, 2]. A downstream target of the 
PI3K pathway is the serine/threonine kinase, AKT, which 
has 3 isoforms (AKT1, AKT2, and AKT3). This kinase 
plays a central role in glucose metabolism, cell survival, 
growth, and proliferation [3]. Another important serine/
threonine kinase is mTOR, which is composed of two dis-
tinct protein complexes. One protein complex, mTORC1, 
is a rapamycin- and nutrient-sensitive multiprotein com-
plex and is downstream AKT [4]. mTORC1 stimulates 
cell growth and progression of the cell cycle in response 
to amino acids, stress, oxygen, energy, and growth factors. 
The second protein complex, mTORC2, is also sensitive to 
growth factors but insensitive to nutrients and rapamycin. 
mTORC2 regulates the cytoskeleton, cell metabolism, and 
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cell survival in response to growth factors [5]. mTORC2 
is upstream AKT in the signaling pathway [4].

Because of the crucial role that the PI3K/AKT/mTOR 
pathway has in cell growth, survival, and proliferation, it 
is not surprising that alterations in this pathway are fre-
quently found in cancer. PI3K/AKT/mTOR pathway altera-
tions are especially common in breast cancer, and it is esti-
mated that up to 70% of tumors have some type of genetic 
mutation that can render this pathway hyperactivated [6]. 
One of the most common genetic alterations found in breast 
cancer are mutations in the PIK3CA gene, which encodes 
the p110α subunit of the PI3K. Approximately 30–40% of 
advanced ER+ breast cancers have an activating PIK3CA 
mutation [7], and more than 80% of these mutations cluster 
within the helical domains (E542K or E545K in exon 9) 
or the kinase domains (H1047R or H1047L in exon 20) of 
p110α [8, 9]. These mutations can either increase the cata-
lytic activity of p110α or increase the retention of p110α, 
respectively [10–13]. The helical domain mutations in exon 
9 disrupt the intermolecular interaction between p85 and 
p110α, an interaction that normally inhibits p110α activ-
ity [10]. The effects of the kinase domain mutations in 
exon 20 are less clear, but previous studies have shown that 
these mutations lead to increased retention of p110α at the 
plasma membrane and constitutive activation of the signal-
ing pathway [11]. All of these genetic alterations lead to 
hyperactivation of the PI3K/AKT/mTOR pathway, thereby 
promoting cell transformation, tumor initiation, and resist-
ance to apoptosis.

2  PI3K/AKT/mTOR Pathway and Its Role 
in Endocrine Resistance

Several preclinical studies have demonstrated that PI3K/
AKT/mTOR pathway activation is a mechanism of acquired 
resistance to long-term estrogen deprivation and has subse-
quently led to further investigation of inhibiting this path-
way as a mechanism to bypass estrogen-independent cell 
survival [14–16]. Human breast cancer cell lines after long-
term estrogen deprivation showed increased phosphorylation 
of mTOR substrates as well as the PI3K substrate AKT. 
Inhibition of mTOR and PI3K induced apoptosis in these 
cells and prevented the emergence of hormone-independent 
cells [14]. Other preclinical studies as well as retrospective 
analysis of some clinical trials in the metastatic setting have 
also suggested that ER+/PIK3CA mutant tumors have a 
lower response to anti-estrogens compared to ER+/PIK3CA 
wild-type tumors [17, 18]. Low levels of estradiol have been 
shown to rescue ER +/PIK3CA mutant cells from the lethal 
effect of PI3K inhibitors [19]. Furthermore, inhibition of 
PI3K/AKT leads to upregulation of ERα mRNA and pro-
tein transcription, suggesting co-regulation of the ER and 
PI3K pathways [20–22]. Inhibition of both ER and PI3K had 
synergistic effects against ER +/PIK3CA mutant xenografts 
[22]. These models show that ER+ breast cancer cells can 
rely on the PI3K/AKT/mTOR pathway for survival and pro-
liferation in the presence of estrogen deprivation and laid the 
foundation for further investigation in vivo of combined ER 
and PI3K inhibition as a therapeutic approach for ER+ breast 
cancers that progress on anti-estrogen treatments.

Mutations in ESR1 have also been well demonstrated 
to cause resistance to endocrine therapy by rendering the 
ligand binding domain of estrogen receptors constitutively 
active [23–25]. Molecular modeling studies of two spe-
cific ESR1 ligand binding domain mutations, Y537S and 
D538G, showed that these mutations render the receptor 
constitutively active even upon antagonist binding [25]. 
Additionally, ESR1 mutations have been shown through 
transcriptional profiling to upregulate activity of the p53 
and mTORC1 signaling pathways, thus promoting endocrine 
resistance and even a metastatic phenotype [26]. Further-
more, preclinical and clinical studies have demonstrated that 
in ER+ metastatic breast cancer, metastatic tumor cells can 
selectively develop ESR1 mutations while on therapy with 
aromatase inhibitors (AIs) [26, 27].

3  Classes of PI3K Pathway Inhibitors

A variety of PI3K pathway inhibitors have been developed 
and can be divided into different classes based on their 
target(s) in the pathway (Table 1). Several of these agents 
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Fig. 1  The PI3K/AKT/mTOR pathway
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inhibit all isoforms of class IA PI3Ks. However, these agents 
are associated with significant off-target effects and toxici-
ties. Consequently, many isoform-specific inhibitors have 
been developed to selectively inhibit specific PI3Ks with 
the goal of reducing off-target effects and improving efficacy 
of the drug by allowing maximal target-inhibitory doses. 
In addition to targeting the PI3Ks, a variety of agents have 
been developed to inhibit other proteins in the PI3K/AKT/
mTOR pathway including mTORC1, mTORC2, and AKT. 
Many of these drugs when combined with endocrine ther-
apy have shown significant clinical benefit with improved 
progression-free survival (PFS) in ER+ metastatic breast 
cancers that have progressed on previous lines of endocrine 
therapy (Table 2).

3.1  mTORC1 (Mammalian Target of Rapamycin 
Complex 1) Inhibitors

The mTORC1 (mammalian target of rapamycin complex 1) 
inhibitors, including sirolimus and its analogs (temsiroli-
mus, everolimus, and deforolimus), are allosteric irrevers-
ible inhibitors of mTORC1 kinase [28]; the mTORC1 or 2 
inhibitors block both mTORC1-dependent phosphorylation 
of s6k1 and mTORC2-dependent phosphorylation of AKT 
[29]. Everolimus is an allosteric inhibitor of mTORC1 but 
does not affect mTORC2. Results from two randomized 
trials published in 2012, BOLERO-2 (exemestane with or 
without the mTOR inhibitor everolimus) and TAMRAD 
(tamoxifen with or without everolimus) [29, 30], showed 
that the addition of everolimus to anti-estrogen therapy in 
patients with metastatic ER+ breast cancer can mitigate the 
effect of developing endocrine resistance in vivo. In both 
trials, patients had been previously treated with AIs then 
had disease progression after an initial response, indicating 
acquired resistance to endocrine therapy. The addition of 
everolimus to anti-estrogen therapy increased the median 
progression-free survival (PFS) in both studies (BOLERO-2 
PFS 7.8 vs. 3.2 months, p < 0.0001; TAMRAD PFS 8.6 vs. 
4.5 months, p < 0.01). In TAMRAD, randomization was 
stratified by primary resistance (relapsed disease during or 
within 6 months of stopping adjuvant AI treatment or dis-
ease progression within 6 months of starting AI treatment 
in the metastatic setting) and secondary resistance (relaps-
ing > 6 months after stopping adjuvant AIs or responding 
for ≥ 6 months to AIs in the metastatic setting). Furthermore, 
subanalysis showed that the time to progression was longer 
in patients with secondary endocrine therapy resistance 
than in patients with primary endocrine therapy resistance 
(14.8 months vs. 5.4 months) suggesting a possible adap-
tive response to long-term estrogen depletion and clinical 
benefit from adding everolimus to hormone therapy [30]. 
These results led to US Food and Drug Administration 
(FDA) and European Medicines Agency (EMA) approval 

of everolimus in combination with endocrine therapy as 
treatment for metastatic ER+ breast cancer after progres-
sion on AIs. Building on the results of the BOLERO-2 and 
TAMRAD trials, results of the PrE0102 trial were pub-
lished in 2018 and showed that the addition of everolimus 
to fulvestrant, a selective estrogen receptor downregulator, 
compared to fulvestrant alone improved median PFS from 
5.1 to 10.3 months (hazard ratio (HR) 0.61 [95% confi-
dence interval (CI) 0.40–0.92]; p = 0.02) in patients with 
ER+ metastatic breast cancer resistant to AI-therapy [31]. 
Phase II trials evaluating drugs that inhibit both mTORC1 
and mTORC2, AZD2014 and sapanisertib, with the aim 
of a more complete blockade of mTOR complexes, have 
been ongoing [32–34]. These drugs have also shown activ-
ity against everolimus-resistant acquired mutations in the 
rapamycin-binding domain of mTOR [35, 36].

3.2  Pan‑PI3K Inhibitors

Several drugs that work as pan-PI3K inhibitors have been 
developed, but have so far had low efficacy without much 
improvement over endocrine therapy alone. These agents 
block all isoforms of class IA PI3Ks and, as a result, are 
associated with significant off-target effects. They have 
shown much lower response rates in breast cancer com-
pared to the response rates seen with the inhibition of other 
oncogenic kinases in other solid tumors (i.e., targeting 
mutant EGFR and ALK in lung cancer and mutant BRAF in 
melanoma). Their toxicity precludes adequate dose inten-
sity, which could likely explain their relative lack of effi-
cacy. They are represented by several small-molecule drugs 
including buparlisib (BKM120), pilaralisib (XL147), and 
pictilisib (GDC-0941) [37]. The BELLE-2 clinical trial [38], 
a randomized, double-blind, placebo-controlled phase III 
trial of buparlisib in combination with fulvestrant compared 
to fulvestrant alone in patients with ER +/HER2– locally 
advanced or metastatic breast cancer that had progressed 
on AI found a modest improvement in PFS in the cohort 
treated with buparlisib and fulvestrant (6.9 vs. 5.0 months, 
p < 0.001). However, for patients with PIK3CA mutations, 
there was a greater improvement in PFS with the addition 
of buparlisib to fulvestrant of 3.8 months (7 vs. 3.2 months, 
HR 0.56, p < 0.001) [38]. Results of the BELLE-3 clinical 
trial [39], a phase III study of buparlisib with fulvestrant in 
patients with ER +/HER2− locally advanced or metastatic 
breast cancer that had relapsed or progressed on endocrine 
therapy or mTOR inhibitors, followed, and were published 
in January 2018. Despite displaying a median PFS that was 
statistically significantly longer in the treatment group versus 
placebo (3.9 months vs. 1.8 months, HR 0.67, p = 0.0003), 
the lack of clinical significance and high rates of grade 3–4 
adverse events in the treatment group, including transami-
nitis, hyperglycemia, dyspnea, pleural effusion, and mood 
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disorders [39], precluded further development of buparlisib 
in ER+ metastatic breast cancer [38, 40–42].

3.3  Pan‑AKT Inhibitors

AKT is a serine/threonine kinase that is a downstream target 
of PI3K. AKT has three isoforms (AKT1, 2, and 3), which 
have very similar structures [3]. Because of the structural 
similarities between the three isoforms, isoform-specific 
inhibitors have proved challenging to develop. Two of 
these inhibitors, capivasertib (AZD5363) and ipatasertib 

(GDC0068), are currently in phase III clinical trials 
(NCT03997123; NCT03337724) for breast cancer in com-
bination with chemotherapy [4]. Results of the recently com-
pleted FAKTION trial [43], a phase II study of capivasertib 
plus fulvestrant versus fulvestrant plus placebo in patients 
with ER +/HER2– locally advanced or metastatic breast 
cancer who had relapsed or progressed on an AI, had prom-
ising results and will lead to further investigation of this 
drug in phase III trials. The addition of capivasertib to ful-
vestrant resulted in significantly longer PFS of 10.3 months 
versus 4.8 months in the placebo group (HR 0.58, 95% CI 

Table 1  Classes of PI3K pathway inhibitors

Class Drug target(s) Drugs Common toxicities by class

mTORC1 (mammalian target of 
rapamycin complex 1) inhibitors

mTORC1 kinase Everolimus Stomatitis
Temsirolimus Rash
Deforolimus Pneumonitis

Hyperglycemia
Immunosuppression

mTORC1/mTORC2 inhibitors mTORC1/mTORC2 kinases Sapanisertib (TAK-228) Hyperglycemia
Rash

AZD2014 Stomatitis
Diarrhea

Pan-PI3K inhibitors All class IA PI3Ks Buparlisib (BKM120) Hyperglycemia
Pilaralisib (XL147) Rash
Pictilisib (GDC-0941) Neutropenia
GDC-0084 Neuropsychiatric effects 

(confusion, depression, 
anxiety)

Hepatotoxicity
Diarrhea

Pan-Akt inhibitors Three isoforms of Akt (Akt1, 2, and 3) Capivasertib (AZD5363) Rash
Ipatasertib (GDC0068) Hyperglycemia
MK2206

Dual PI3K and mTOR inhibitors p110 subunit of PI3K and mTOR Dactolisib (BEZ235) Stomatitis
Voxtalisib (XL765) Hyperglycemia
Gedatolisib Immunosuppression
Bimiralisib (PQR309)

Isoform-specific PI3K inhibitors PI3K p110α isoform Alpelisib (BYL719) Hyperglycemia
Taselisib (GDC-0032) Rash
Serabelisib (MLN1117) Diarrhea
MEN1611 Pneumonitis
GDC-0077

PI3K p110δ isoform Idelalisib (CAL-101) Hyperglycemia
Duvelisib (IPI-145) Rash

Diarrhea
Hypertension

PI3K p110α and p110δ isoforms Copanlisib Hyperglycemia
Hypertension
Diarrhea
Neutropenia
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0.39–0.84; p = 0.0018). The most common grade 3-4 adverse 
events were hypertension, diarrhea, rash, and fatigue [43].

AKT1E17K has been identified as the most common 
somatic mutation in AKT and occurs in approximately 7% 
of ER+ metastatic breast cancers. This mutation results in a 
glutamic acid to lysine substitution at amino acid 17 (E17K) 
in the lipid binding pocket of AKT and ultimately causes 
constitutive membrane localization and activation of AKT 
[44]. Results of a phase I study of capivasertib as monother-
apy or in combination with fulvestrant in heavily pretreated 
patients with ER+ metastatic breast cancer and the AKT1E17K 
mutation also had promising results [45]. Capivasertib dem-
onstrated clinically meaningful activity and tolerability both 
as monotherapy and in combination with fulvestrant, indicat-
ing the potential utility of this drug as a targeted therapy as 
either a single agent or in combination with estrogen block-
ade in the future [45].

3.4  Dual PI3K and mTOR Inhibitors

An ongoing area of clinical development are compounds 
that target both the p110 subunit of PI3K and mTOR. Dual 
blockade of mTOR and the p110 subunit of PI3K would 
provide more complete inhibition of the  PI3K/AKT/
mTOR signaling pathway at multiple points as well as inter-
rupt negative feedback loops and thereby increase clinical 
efficacy. Multiple dual PI3K and mTOR inhibitors are cur-
rently in clinical development. Phase I trials have evalu-
ated dactolisib (BEZ235), voxtalisib (XL765), bimiralisib 
(PQR309), and gedatolisib [4, 46, 47]. These compounds 
have a much broader activity profile and could be used to 
treat a variety of tumors with a range of genetic abnormali-
ties. However, as a result of their broader activity, these 
agents have more off-target effects and toxicities, which has 
made their development challenging [28]. A recent phase 2 
trial of voxtalisib in patients with hematologic malignancies 
showed an acceptable safety profile and promising efficacy 
[48]. No studies with dual inhibitors have been conducted 
in patients with breast cancer to date.

3.5  Isoform‑Specific PI3K Inhibitors

Isoform-specific inhibitors were developed with the goal 
of achieving maximal target-inhibitory doses while poten-
tially avoiding the off-target toxicities seen with pan-PI3K 
inhibitors. A variety of isoform-specific inhibitors have 
been developed including agents that selectively inhibit 
the PI3K p110α (e.g., alpelisib [BYL719] and taselisib 
[GDC-0032]) and the p110β, p110γ, or p110δ (e.g. idela-
lisib) isoforms [37]. Copanlisib selectively inhibits both 
the p110α and p110δ isoforms and is approved for the 
treatment of B cell hematologic malignancies. It is also 
currently being studied in phase I/II trials for metastatic 

breast cancer [49]. The p110α isoform is most commonly 
mutated in cancer, and studies have shown that selective 
inhibition of this isoform is enough to block signaling in 
the PI3K/AKT pathway in response to different growth 
factor stimuli [50–52]. Alpelisib was the first PI3Kα inhib-
itor studied as a single agent and showed preferential activ-
ity against tumors with PIK3CA mutations. Results from 
phase IB trials [52, 53] of alpelisib and endocrine therapy 
showed that treatment with combination endocrine therapy 
and a PI3K inhibitor provide clinical benefit in ER+ meta-
static breast cancers with acquired resistance to endocrine 
therapy, particularly in the PIK3CA mutated cancers. The 
large phase III SOLAR-1 trial [54] was designed based on 
these findings and utilized endocrine therapy plus alpelisib 
in ER+ metastatic breast cancer resistant to endocrine ther-
apy. The SOLAR-1 trial showed prolonged progression-
free survival (PFS) in patients with ER +/PIK3CA mutated 
metastatic breast cancer who had previously been treated 
with endocrine therapy and led to the FDA approval of 
alpelisib for patients with ER +/PIK3CA mutated meta-
static breast cancer in May 2019. We should note that the 
vast majority of participants in the SOLAR-1 trial did not 
have prior exposure to CDK4/6 inhibitors, which are cur-
rently approved in combination with endocrine therapies 
for further-line treatment of ER+ metastatic breast cancer 
[55–60]. Based on the improvement in PFS seen in the 
metastatic setting with the SOLAR-1 trial, the NEO-ORB 
trial [61] followed to investigate whether the addition of 
alpelisib to letrozole would also improve response rates 
in the neoadjuvant setting for early ER+ breast cancer. 
The trial did not meet its primary objectives of improved 
ORR with the addition of alpelisib to letrozole in either 
the PIK3CA-mutant tumors or -wild-type tumors after 
24 weeks of neoadjuvant treatment, and the pathologic 
complete response rates were low in all treatment groups 
[61].

The BYLIEVE trial is an ongoing phase II, multicenter, 
open-label, three-cohort, non-comparative study of alpe-
lisib plus endocrine therapy (either fulvestrant or letro-
zole) in patients with HR+/HER2− advanced breast cancer 
with PIK3CA mutation(s) whose disease has progressed 
on or after prior CDK4/6 inhibitor (CDK4/6i) combina-
tion therapy [62]. Preliminary results of the cohort of 
patients treated with CDK4/6i in combination with an AI 
immediately prior have met the primary endpoint of PFS 
at 6 months, achieved in 50.4% of patients, with median 
PFS duration of 7.3 months [63]. These initial results show 
clinically meaningful efficacy of alpelisib plus endocrine 
therapy after prior treatment with CDK4/6 inhibitors.

Taselisib is a β-sparing potent inhibitor of p110α, 
p110δ, and p110γ, and has a greater selectivity against 
PIK3CA mutant isoforms than wild-type [64]. A phase II 
trial of taselisib with fulvestrant showed clinical activity 



 S. E. Nunnery, I. A. Mayer 

regardless of PIK3CA mutation status, but did show a 
higher objective response rate in patients with PIK3CA 
mutant tumors compared to wild-type (41% vs. 14%, 
respectively) [65]. Taselisib was further investigated in a 
randomized phase III study (SANDPIPER trial) in com-
bination with fulvestrant for patients with metastatic or 
locally advanced ER+ tumors that have progressed dur-
ing or after AI therapy irrespective of PIK3CA mutation 
status. The treatment group only had a slight improvement 
in PFS of 2 months (7.4 vs. 5.4 months, p = 0.0037) [66]. 
The LORELEI trial was a multicenter, randomized, dou-
ble-blind, placebo-controlled phase II study investigating 
taselisib with letrozole compared to placebo with letrozole 
as neoadjuvant treatment in patients with stage I–III, oper-
able, ER/PR+ , HER2-negative breast cancer. This study 
found no significant differences in pathological complete 
response between the two groups either in the overall 
population or in patients with PIK3CA-mutated tumors 
[67]. In both the SANDPIPER and LORELEI trials, there 
were also high rates of grade 3–4 toxicities with taselisib, 
including diarrhea and hyperglycemia in 17% and 11% of 
patients, respectively, leading to drug discontinuation [66, 
67]. As a result of these two clinically negative trials and 
the toxicities associated with taselisib, further develop-
ment of the drug has been stopped.

4  Associated Toxicities

One of the challenges in developing drugs that inhibit the 
PI3K/mTOR/AKT pathways and in treating patients with 
these drugs is the associated toxicities. These agents dis-
play a wide range of both on-target and off-target effects. 
Some of the most common side effects seen with PI3K 
pathway inhibitors are hyperglycemia, dermatitis and rash, 
stomatitis, diarrhea, nausea, and fatigue [68–70]. Other 
less common side effects that are reported include eleva-
tion of pancreatic enzymes, elevation of liver enzymes, 
immune dysfunction/lymphocytopenia, and pneumonitis 
[54, 68, 71]. Autoimmune hepatitis is rare and has been 
predominantly reported with pan-PI3K inhibitors or com-
bination therapies [38, 40]. Fortunately, pancreatic enzyme 
or liver enzyme elevation rarely lead to the development of 
pancreatitis or liver failure, but they still have significant 
effects clinically by limiting drug dose and leading to drug 
discontinuation. Other uncommon toxicities associated 
with PI3K/AKT inhibitors include opportunistic infections 
(seen more frequently with mTOR inhibitors), hyperten-
sion, and CNS symptoms (seen with buparlisib, a pan-
PI3K inhibitor) [38, 40, 68, 71]. Since these drugs have a 
short half-life, most side effects are reversible with drug 
interruption and are manageable with early interventions.

5  Approach to PIK3CA Mutation Testing

Hormone receptors do not remain stable throughout tumor 
progression, and multiple studies have found a wide range 
of discordance between HR status from primary tumor 
to sites of relapse and metastasis [72, 73]. One review 
reported a large range of receptor discordance for ER and 
PR status of 6–40% and 21–41%, respectively [73]. It has 
also been well documented that the acquisition of ESR1 
mutations during AI therapy in metastatic, ER+ breast 
cancer is a common mechanism of developing resistance 
to hormonal therapy [27, 74, 75]. As a result, biopsy of a 
metastatic site whenever possible in breast cancer patients 
who develop new metastatic disease is important to con-
firm concordant ER/PR and HER2 status and to assess for 
new somatic mutations in the tumor that would impact 
treatment decisions. Now with the approval of alpelisib for 
PIK3CA mutant breast cancer and PARP inhibitors for ger-
mline BRCA  mutant breast cancer, it is mandatory per the 
National Comprehensive Cancer Network (NCCN) guide-
lines to perform tumor profiling either through Next gen-
eration sequencing (NGS) on tumor tissue or through cir-
culating tumor DNA (ctDNA) from plasma for all patients 
with metastatic breast cancer, especially ER+ metastatic 
breast cancer [54, 76–78]. Additionally, identification of 
tumors expressing ESR1 mutations is important in guid-
ing therapy since some data suggest that these tumors 
have improved response to treatment with fulvestrant-
containing regimens rather than AI regimens [79]. In the 
SoFEA trial, patients with ESR1 mutations had improved 
PFS with fulvestrant compared to exemestane (n = 18; HR 
0.52; 95% CI 0.30–0.92; p = 0.02), versus patients with 
wild-type ESR1 who had similar PFS with either treatment 
[79, 80]. However, in the PALOMA-3 trial, there was no 
difference in PFS observed with treatment of palbociclib 
plus fulvestrant compared to fulvestrant plus placebo in 
patients with tumors expressing ESR1 mutations compared 
to wild-type tumors [59].

The ongoing phase III PADA-1 trial [81] seeks to answer 
the question of which endocrine therapy is optimal to com-
bine with a CDK4/6 inhibitor and the impact of ESR1 muta-
tions on response to this treatment. This trial includes 1017 
patients with ER+ , Her2− metastatic breast cancer who 
had no prior therapy for metastatic disease and no known 
resistance to AI therapy based on no prior AI treatment or 
a disease-free interval of more than 12 months from adju-
vant treatment with an AI. All patients had cell-free DNA 
tested for ESR1 mutations at baseline and were on treatment 
with AI combined with palbociclib at study initiation. At 
baseline, 33 (3.2%) patients had an ESR1 mutation, and 135 
patients were found to have an emerging ESR1 mutation. 
These patients were randomized to continue palbociclib and 
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AI or switch to palbociclib combined with fulvestrant. Some 
initial study results were reported at Virtual ASCO 2020 
and found that patients with ESR1 mutation had a worse 
prognosis with median PFS of 11 months for ESR1 mutants 
compared to 26.7 months for wild-type at a median follow-
up of 21.2 months (HR = 2.3, p < 0.001). However, clearance 
of ESR1 mutation after 1 month of treatment improved prog-
nosis with a median PFS of 24.1 months in the patients who 
cleared the mutation compared to 7.4 months in patients who 
still had detectable ESR1 mutations [81]. Final results from 
the study comparing patients treated with AI and palbociclib 
versus fulvestrant and palbociclib have not yet been reported.

In order to be eligible for treatment with alpelisib, 
patients with advanced or recurrent HR+ , HER2− tumors 
must have PIK3CA mutations detected in tumor or plasma by 
ctDNA [70]. In the SOLAR-1 trial, there were 341 patients 
enrolled in the cohort with a PIK3CA mutation, and of those 
341 patients with a PIK3CA mutation, 336 (99%) patients 
had one or more PIK3CA mutations confirmed in tumor tis-
sue using the FDA-approved  therascreen® PIK3CA RGQ 
PCR Kit. Nineteen of those patients had no plasma speci-
men available for testing with  therascreen® PIK3CA RGQ 
PCR Kit. Of the remaining 317 patients with PIK3CA muta-
tions confirmed in tumor tissue, 177 patients (56%) also had 
PIK3CA mutations identified in plasma, and 140 patients 
(44%) did not have PIK3CA mutations identified in plasma 
specimen [54]. Based on these findings, if no mutation is 
detected initially in a plasma specimen, it is recommended 
to test tumor tissue [70]. There are currently two FDA-
approved testing modalities for determining the presence of 
PIK3CA mutations. The  therascreen® PIK3CA RGQ PCR 
Kit (QUIAGEN, Germany) is a real-time qualitative PCR 
test for the detection of 11 mutations in the PIK3CA gene 
using genomic DNA from formalin-fixed, paraffin-embed-
ded (FFPE) breast tumor tissue or circulating tumor DNA 
(ctDNA) from plasma [82]. NGS by FoundationOne CDX 
(Foundation Medicine, Cambridge, MA, USA) for the detec-
tion of substitutions, insertion and deletion alterations, and 
copy number alterations in 324 genes and select gene rear-
rangements using DNA isolated from FFPE tumor tissue is 
also FDA approved [83].

6  Conclusion

Alterations in the PI3K/AKT/mTOR pathway are especially 
common in breast cancer, rendering the pathway hyperacti-
vated and promoting uncontrolled cell proliferation, resist-
ance to apoptosis, and tumorigenesis [6]. Specifically, muta-
tions in the PIK3CA gene are the most common activating 
mutations found in breast cancer and are present in approxi-
mately 30% of advanced ER+ HER2− breast cancers [7]. In 
recent years, studies have also demonstrated that ER+ breast 

cancer cells can rely on the PI3K/AKT/mTOR pathway for 
survival and proliferation as an adaptive mechanism after 
long-term estrogen deprivation. These discoveries led to 
the development of combination ER and PI3K/AKT/mTOR 
pathway inhibition as a therapeutic approach for ER+ breast 
cancers that progress on anti-estrogen treatments.

There are multiple preferred regimens approved for 
first-line and subsequent-line therapies in patients with 
metastatic ER/PR +, HER2– breast cancer, however, opti-
mal sequencing of these various targeted agents or their 
combinations have not yet been established [78]. Rand-
omized clinical trials investigating the optimal sequenc-
ing of these targeted agents and their combinations are 
warranted. The initial targeted therapy that is preferred to 
combine with endocrine therapy (ET) is a CDK 4/6 inhibi-
tor, because their side effects are generally much more 
tolerable compared to those of everolimus or alpelisib 
[55–58]. If a patient develops disease progression on ET 
combined with CDK 4/6 inhibitor, there are not yet data 
to support subsequent therapy with an alternative CDK 
4/6 inhibitor, although several clinical trials are ongoing 
[78]. Patients could next be considered for subsequent-
line therapy with ET combined with everolimus or with 
alpelisib based on the presence of a PIK3CA mutation in 
the tumor. Disease progression on more than three prior 
lines of ET including combination with a targeted agent as 
well as the presence of rapidly progressive visceral disease 
should prompt consideration for transitioning treatment to 
cytotoxic chemotherapy.

As previously discussed, tumors found to have PIK3CA 
mutations have improved clinical benefit from alpelisib, 
and similar improvements in clinical benefit are being 
seen in early studies with capivasertib in tumors with 
AKT1E17K mutations. Further discovery of somatic muta-
tions or other biomarkers that can predict which tumors 
are most dependent on the PI3K/AKT/mTOR pathway and 
will be most responsive to treatment with pathway inhibi-
tors will allow for improved optimization of risk–benefit 
ratios for patients. Another interesting area of study is 
whether or not upfront targeting of the PI3K/mTOR/AKT 
pathway in addition to standard adjuvant ET in high-risk 
disease that has not yet metastasized will improve dis-
ease-free survival time and prevent late recurrence. Based 
on the success of the BOLERO-2 trial, which showed that 
the addition of everolimus to examestane more than dou-
bled the average time to disease progression for patients 
with advanced HR+ positive breast cancer, the Southwest 
Oncology Group designed the e3 (S1207) trial. The e3 
(S1207) Breast Cancer Study is an ongoing phase III, 
placebo-controlled trial evaluating the use of adjuvant 
endocrine therapy combined with 1 year of everolimus 
compared to adjuvant endocrine therapy alone in women 
with high-risk HR +/HER2– breast cancer that has not 
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yet metastasized. The goal of this trial is to determine 
whether the early combination of everolimus with adju-
vant endocrine therapy will lengthen disease-free survival 
time compared to adjuvant endocrine therapy alone as 
well as assess the impact of everolimus on patients’ qual-
ity of life [84].

In summary, inhibitors of the PI3K/AKT/mTOR path-
way are an important part of the current clinical man-
agement of ER+ metastatic breast cancer. However, 
despite significant clinical activity, several challenges 
for the therapeutic targeting of PI3K/AKT/mTOR remain. 
Although manageable, on-target toxicities induced by 
these drugs are not insignificant. Additionally, identifying 
other targeted drugs that should be used in combination 
with PI3K pathway inhibitors will require development of 
rational combinations that have manageable toxicities and 
better clinical activity than when these targeted agents 
are used by themselves or sequencing a PI3K pathway 
inhibitor.
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