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ABSTRACT

Metabolic rewiring and epigenetic remodeling, which are
closely linked and reciprocally regulate each other, are
among the well-known cancer hallmarks. Recent evi-
dence suggests that many metabolites serve as sub-
strates or cofactors of chromatin-modifying enzymes as
a consequence of the translocation or spatial regional-
ization of enzymes or metabolites. Various metabolic
alterations and epigenetic modifications also reportedly
drive immune escape or impede immunosurveillance
within certain contexts, playing important roles in tumor
progression. In this review, we focus on how metabolic
reprogramming of tumor cells and immune cells
reshapes epigenetic alterations, in particular the acety-
lation and methylation of histone proteins and DNA. We
also discuss other eminent metabolic modifications
such as, succinylation, hydroxybutyrylation, and lacty-
lation, and update the current advances in metabolism-
and epigenetic modification-based therapeutic pro-
spects in cancer.
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PATHWAYS LEADING TO THE INTEGRATION OF
METABOLISM AND EPIGENETIC MODIFICATION
DURING CANCER DEVELOPMENT

Metabolic reprogramming is one of the major features of
cancer, during which characteristics of metabolic enzymes,
upstream regulating molecules and downstream metabolic
products, known as metabolites, are altered (DeBerardinis
et al., 2008b; Heiden et al., 2009; Jones and Thompson,
2009; Hanahan and Weinberg, 2011; DeBerardinis and
Thompson, 2012; Hirschey et al., 2015; DeBerardinis and
Chandel, 2016; Pavlova and Thompson, 2016; Sun et al.,
2018; Thompson, 2019; Dai et al., 2020; Faubert et al.,
2020). Recently, metabolism has been regarded as a major
player and context-dependent regulator of epigenetic modi-
fications, and increasing evidence suggests that intermedi-
ary metabolites drive chromatin dynamics through chemical
posttranslational modifications (PTMs) that alter chromatin
structures and functions (Kaelin and McKnight, 2013; Janke
et al., 2015; Keating and El-Osta, 2015; Parker and Metallo,
2016; Reid et al., 2017; Chisolm and Weinmann, 2018;
Wang and Lei, 2018; Zheng et al., 2020). Cellular metabo-
lism and the epigenome interact in a bidirectional manner
and interact with the genetic and molecular drivers that
regulate cancer (Fig. 1). However, a comprehensive under-
standing of the interactions between molecular drivers,
metabolic reprogramming, and epigenetic modifications in
cancer are lacking, and thus, further elucidation of the
associations is both necessary and pressing for more
effective cancer therapy.
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Cellular chromatin is composed of DNA and histones.
Histones can undergo a wide range of PTMs such as
phosphorylation, methylation, acetylation, and other acyla-
tion modifications. Similar to histones, DNA and RNA can be
chemically modified by methylation to regulate gene
expression. Epigenetic characteristics are usually abnormal
in cancer cells. Human cancers often exhibit characteristic
changes in DNA methylation, including genome-wide
hypomethylation and site-specific hypermethylation (Jones
and Baylin, 2002; Feinberg and Tycko, 2004). Global DNA
hypomethylation in cancer was first observed by the Bert
Vogelstein group in 1983 (Feinberg and Vogelstein, 1983). In
mice, DNA hypomethylation is sufficient to induce aggres-
sive T-cell lymphomas with a high frequency of chromosome
15 trisomy (Eden et al., 2003; Gaudet et al., 2003), whereas
tumor suppressor genes are usually silenced by site-specific
DNA hypermethylation at their promoters (Esteller et al.,
2001). Similarly, the loss of histone 4 lysine 16 acetylation or
histone 4 lysine 20 trimethylation is a common hallmark of
human cancers (Fraga et al., 2005). Low levels of histone 3
lysine 4 dimethylation are associated with poor prognosis for

patients with prostate (Seligson et al., 2005; Bianco-Miotto
et al., 2010), lung (Barlesi et al., 2007; Seligson et al., 2009),
breast (Elsheikh et al., 2009), pancreas (Manuyakorn et al.,
2010), or kidney cancer (Ellinger et al., 2010). In addition,
many oncogenes and tumor suppressors such as hypoxia-
inducible factors (HIFs) (Watson et al., 2010; Prickaerts
et al., 2016; Nanduri et al., 2017), von Hippel-Lindau tumor
suppressor (VHL) (Herman et al., 1994; Schmitt et al., 2009;
Vanharanta et al., 2013), Myc (Dang, 2012; Stine et al.,
2015; Poole and van Riggelen, 2017; Topper et al., 2017;
Poli et al., 2018; Li et al., 2020), p53 (Vrba et al., 2008; Su
et al., 2009; Saldana-Meyer and Recillas-Targa, 2011),
phosphatase and tensinhomolog (PTEN) (Salvesen et al.,
2001; Kang et al., 2002; Soria et al., 2002; Garcia et al.,
2004; Alvarez-Nunez et al., 2006), liver kinase B1 (LKB1)
(Esteller et al., 2000; Trojan et al., 2000), AMP-activated
protein kinase (AMPK) (Ruderman et al., 2010; Gongol et al.,
2018; Yuan et al., 2020), and mechanistic target of rapa-
mycin kinase (mTOR) (Laribee, 2018; Zeng et al., 2019),
drive epigenetic reprogramming and are regulated by epi-
genetic modifications (Fig. 1).

Figure 1. Crosstalks between metabolic reprogramming, epigenetic modifications, and transcriptional regulation. The cell

metabolome and epigenome interact in a two-way manner and with genetic and molecular drivers that regulate cancer. A

comprehensive understanding of the interactions between molecular drivers, metabolic reprogramming, and epigenetic modifications

in cancer will further elucidate their connections and contribute to the development of effective cancer therapies.
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Epigenetic abnormalities regulate the expression of many
metabolic genes, thus playing important roles in metabolic
rewiring and redox homeostasis of cancer cells (Wong et al.,
2017). In contrast, metabolic flux is involved in epigenetic
regulation by affecting the biosynthesis of macromolecules
and energy production (Zheng et al., 2020). All these events
are synergistically involved in the path to cancer. For
example, in addition to regulating glucose, glutamine and
serine metabolism at the transcriptional level (Gao et al.,
2009; Stine et al., 2015; Sun et al., 2015; Wu et al., 2017),
cMyc increases SDHA (succinate dehydrogenase complex,
subunit A) acetylation by promoting SKP2 (S-phase kinase-
associated protein 2)-mediated sirtuin3 degradation, leading
to SDHA deactivation and succinate accumulation.
Increased succinate inhibits the activity of histone
demethylases, which triggers histone 3 lysine 4 trimethyla-
tion and the expression of tumor-specific genes and sub-
sequent tumor progression (Li et al., 2020). During
pancreatic ductal adenocarcinoma (PDAC) progression,
6-phosphogluconate dehydrogenase (6PGD) -mediated
oxidative pentose phosphate pathway (oxPPP) supports the
reprogramming of histone H3K9 and DNA methylation,
thereby promoting N-cadherin (epithelial-mesenchymal
transition marker) transcription and N-cadherin-mediated
distant metastasis (McDonald et al., 2017). SETD2 (SET
domain-containing 2, a histone lysine methyltransferase)
integrates EZH2 (enhancer of zeste homolog 2) and the
AMPK signaling pathway to restrict prostate cancer metas-
tasis by linking metabolism with epigenetic modifications
(Yuan et al., 2020). H3.3K27M (histone H3.3 lysine 27-to-
methionine) mutation in diffuse intrinsic pontine gliomas
(DIPGs) results in global H3K27me3 reduction by multiple
mechanisms, such as the aberrant PRC2 interactions or
hampered H3K27me3 spreading (Bender et al., 2013; Chan
et al., 2013; Lewis et al., 2013; Stafford et al., 2018; Haru-
tyunyan et al., 2019). However, by integrating metabolic and
epigenetic pathways, Chung et al. found that H3.3K27M
mutations promote glycolysis, glutaminolysis, and TCA
cycle-derived α-KG (α-ketoglutarate) accumulation, leading
to α-KG-dependent activation of H3K27 demethylases
KDM6A/6B, H3K27 hypomethylation, and tumor progression
(Chung et al., 2020; Zhao and Miao, 2020). Histone acety-
lation regulates cell proliferation and tumor progression (Cai
et al., 2011; Donohoe et al., 2012; Lee et al., 2014), as well
as other cellular biological behaviors not covered in this
review article, such as intracellular pH (McBrian et al., 2013),
hippocampal memory (Mews et al., 2017), cell fate decisions
(Yadav et al., 2018), and cellular differentiation (Chisolm and
Weinmann, 2018).

Notably, all these events and reactions require metabo-
lites, including acetyl-CoA, NAD+ (nicotinamide adenine
dinucleotide), SAM (S-adenosyl methionine), α-KG, FAD
(flavin adenine dinucleotide), ATP, and succinate, as sub-
strates or cofactors (Fig. 2). The dysregulation of histone
PTMs and DNA/RNA modifications is associated with the
occurrence of many diseases. Although all these metabolites

play crucial roles in energy metabolism, cell cycle progres-
sion, cell growth and death, neuroregeneration, circadian
rhythm, and the pluripotency of stem cells, in this review, we
discuss the current understanding of how essential
metabolites, as well as their regulating molecules, control the
epigenome by dynamically regulating the metabolic states of
DNA, histones and other proteins during cancer
development.

METABOLITES PLAY KEY ROLES IN EPIGENETIC
REMODELING ON THE PATH TO CANCER

Acetyl-CoA metabolism in acetylation regulation

Writers, readers, and erasers of protein acetylation

Protein (histone) acetylation is a chemical reaction catalyzed
by lysine (histone) acetyltransferases (KATs/HATs), during
which an acetyl group donated by acetyl-CoA is added to a
lysine residue of the protein (histone). Three major families
of KATs, GNAT (G protein subunit alpha transducin), MYST
(Moz, Ybf2/Sas3, Sas2, and Tip60), and p300/CBP (E1A-
binding protein p300/CREB-binding protein), have been
identified (Sabari et al., 2017). All these KATs require acetyl-
CoA, the sole donor of the acetyl group in eukaryotic cells
(Choudhary et al., 2014). Bromodomain proteins (e.g., BRD4
and BRDT), YEATS domain proteins (e.g., MLLT3 and
Taf14), and double PHD finger (DPF) domain proteins (e.g.,
MOZ and DPF2) are readers that interact with acetyl-lysine
residues and recognize the lysine acetylation (Kacetyl)
(Sabari et al., 2017) to recruit transcription factors and/or
super elongation complexes to support transcriptional acti-
vation (Fujisawa and Filippakopoulos, 2017; Gates et al.,
2017; Zhao et al., 2017; Haws et al., 2020). Lysine
deacetylases are erasers critical for removing acetyl groups.
Zinc-dependent histone deacetylases (zinc-dependent
HDACs) and NAD+-dependent sirtuins are two major fami-
lies of lysine deacetylases (De Ruijter et al., 2003; Jing and
Lin, 2015). Class I (HDAC1, 2, 3, and 8), class II (HDAC4, 5,
6, 7, 9, and 10), and class IV (HDAC11) HDACs are zinc-
dependent enzymes, and class III HDACs, also called sir-
tuins, are dependent on the NAD+ concentration (Fig. 2).

In most mammalian cells, acetyl-CoA is a central
metabolite that is primarily generated from glucose-derived
pyruvate by the pyruvate dehydrogenase complex (PDC) in
mitochondria. Fatty acid β-oxidation (Rufer et al., 2009), the
catabolism of branched amino acids (BCAAs) (Harris et al.,
2005), and free acetate all contribute to the generation of
mitochondrial acetyl-CoA (Pietrocola et al., 2015) (Fig. 2);
however, there is no acetyl-CoA transporter on the mito-
chondrial membrane. In rapidly proliferating cells, citrate,
upon synthesis due to acetyl-CoA and oxaloacetate (OAA)
condensation in mitochondria, is quickly exported to the
cytosol by the citrate carrier SLC25A1, where it is converted
back to acetyl-CoA and OAA by ATP citrate lyase (ACLY)
(Icard et al., 2012; Zaidi et al., 2012). Both ACLY and all the
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subunits of PDC are present in the nucleus of mammalian
cells and promote the generation of acetyl-CoA (Wellen
et al., 2009; Sutendra et al., 2014). Acetyl-CoA synthesis
from acetate is mediated by acyl-CoA synthetase short-
chain family members (ACSSs), including ACSS1 and
ACSS3 in mitochondria and ACSS2 in the cytoplasm and

nucleus (Luong et al., 2000; Fujino et al., 2001; Perez-
Chacon et al., 2009; Ariyannur et al., 2010; Choudhary et al.,
2014; Comerford et al., 2014). Acetyl-CoA functions as a
carbon source for histone acetylation, cell growth and pro-
liferation (Cai et al., 2011) and regulates autophagy (Eisen-
berg et al., 2014) and intracellular pH (McBrian et al., 2013).

Figure 2. An overview of metabolic connections to epigenetic remodeling. Nutrients such as glucose, fatty acids, and amino

acids are metabolized by cells to produce a variety of metabolites, such as acetyl-CoA, NAD+, SAM, α-KG, ATP, and succinate, which

function as substrates or cofactors to modify chromatin and proteins. Specifically, 1) UDP-GlcNAc, as a donor substrate derived from

the HBP pathway integrating glucose, glutamine, fatty acid (acetyl-CoA), and nucleotide metabolism (UDP), is catalyzed by OGT for

GlcNAcylation modification, and OGA controls the reverse reaction. 2) Lactate generates lactyl-CoA, which contributes a lactyl group

to lysine residues of histone proteins through p300, generating a novel modification called lactylation. 3) Glucose-, fatty acid-, amino

acid-, and acetate-derived acetyl-CoA are widely involved in acetylation modification. Histone acetylation is catalyzed by HATs, and

the reverse reaction is mediated by lysine deacetylases (HDAC and SIRT). 4) Based on the ratio of ATP:AMP, AMPK is required for

the phosphorylation of histones under various stress conditions. 5) Histone lysine β-hydroxybutyrylation (Kbhb) depends on the

metabolite β-hydroxybutyrate (βOHB), which is produced by the ketone body metabolic pathway. The enzymes involved in acetylation

modification mediate this reversible reaction. 6) Citrulline is categorized into two types: free citrulline from the arginine-coupled urea

cycle and the guanidine dehydration of arginine residues on proteins to create citrulline residues. Histone citrullination is a PTM that

converts arginine residues to citrulline via PAD enzymes, which are Ca2+-dependent. 7) TCA cycle-derived succinyl-CoA is the major

substrate for succinylation, and the opposite reaction is mediated by KAT2A, CPT1A, and SIRT5. 8) Reversible chromatin methylation

is coupled with SSP, the folate cycle, and the methionine cycle. SAM is the substrate for HMTs and DNMTs, leading to the production

of SAH. Succinate, fumarate, and 2-HG inhibit the demethylases HDMs and TETs, which catalyze the demethylation reaction in an α-

KG-dependent manner. In addition, NAD+ and NADH transitions are involved in modifications such as acetylation, β-hydroxybu-

tyrylation, and succinylation.
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Here, we focus on localized acetyl-CoA production mediated
by PDC, ACLY, and ACSSs in different organelles and its
regulation of chromatin and other proteins.

The roles of compartmentalized acetyl-CoA metabolism
in chromatin regulation and protein acetylation

PDC Glucose-derived cytosolic pyruvate enters mitochon-
dria by the mitochondrial pyruvate carrier (MPC), a hetero-
dimer of MPC1 and MPC2 (Herzig et al., 2012).
Mitochondrial pyruvate is decarboxylated to generate acetyl-
CoA by PDC, a large multicomponent composed of pyruvate
dehydrogenase (PDH), dihydrolipoamide S-acetyltrans-
ferase (DLAT), dihydrolipoamide dehydrogenase (DLD),
pyruvate dehydrogenase kinase (PDK), pyruvate dehydro-
genase phosphatase (PDP), and pyruvate dehydrogenase
complex, component X (PDHX). Among these proteins,
PDH, DLAT, and DLD are directly involved in CoA- and
NAD+-dependent pyruvate decarboxylation; PDK and PDP
are two regulatory components; and PDHX is a nonenzy-
matic subunit (Patel et al., 2014).

Once mitochondrial activity is suppressed by Bcl-xL (B-
cell lymphoma-2-like 1, also known as BCL2L1) overex-
pression, the levels of citrate and acetyl-CoA are decreased,
but there is no obvious decrease in histone H3 or H4
acetylation (Yi et al., 2011). By isolating the nuclear com-
ponents and confocal microscopy, Sutendra et al. found the
presence of PDH, DLAT, and DLD in the nucleus in different
types of cells. These components are required for acetyl-
CoA generation and the acetylation of the core histones
H2B, H3, and H4. Increased nuclear PDC proteins are
translocated from mitochondria upon serum stimulation,
epidermal growth factor stimulation, or mitochondrial stress
during S phase. The inhibition of nuclear PDC by imple-
menting novel strategies decreased the acetylation levels of
specific histone lysine residues that are vital for cell cycle
progression and S phase entry (de Boer and Houten, 2014;
Sutendra et al., 2014) (Fig. 3).

The role of PDC in cancer progression remains incon-
clusive (Kim et al., 2006; Papandreou et al., 2006; Hitosugi
et al., 2011; Kaplon et al., 2013; Sutendra et al., 2014). In
mouse and human prostate cancer models, Chen et al.
found that mitochondrial PDC provides cytosolic citrate for
lipid synthesis, whereas nuclear PDC is critical for the
acetylation of H3K9 and the expression of sterol regulatory
element-binding transcription factor (SREBF) target genes,
such as ACLY and squalene epoxidase (SQLE). Therefore,
PDCs located in different organelles promote lipogenesis
and prostate cancer progression by providing substrates and
upregulating lipid metabolic enzymes at epigenetically
modified levels, respectively (Chen et al., 2018a). The E2
subunit of PDC (also known as DLAT) binds with PKM2
(pyruvate kinase isozyme M2) and p300 to generate a large
complex in the nucleus that includes aryl hydrocarbon
receptor (AhR), a transcription factor involved in xenobiotic
metabolism such as CYP1A1 (cytochrome P4501A1). In this

large nuclear complex, the pyruvate kinase activity of PKM2
controls the production of pyruvate from PEP, and nuclear
PDC catalyzes pyruvate to produce local acetyl-CoA for
histone acetylation at the gene enhancer controlled by p300
(Matsuda et al., 2016) (Fig. 3). A novel oncogene with
kinase-domain (NOK), a potent oncogene, promotes histone
acetylation by inducing the translocation of PDC from mito-
chondria to the nucleus, thus causing the occurrence and
metastasis of tumors (Shi et al., 2017).

ACLY ACLY, which catalyzes the conversion of citrate to
acetyl-CoA and OAA, is overexpressed in many cancers and
links energy metabolism, biosynthesis, and epigenetic
modification (Chypre et al., 2012; Zaidi et al., 2012; Icard
et al., 2020). The structural basis for ACLY function was
recently revealed (Verschueren et al., 2019). SiRNA knock-
down of ACLY or pharmacologic inhibitor SB-204990
inhibiting ACLY activity can significantly increase the mito-
chondrial membrane potential and inhibit lipid synthesis, cell
cycle entry, and cell growth (Hatzivassiliou et al., 2005). By
deconvolution microscopy and subcellular fractionation,
ACLY was found to exist not only in the cytoplasm but also in
the nucleus. Nuclear localized ACLY is the major source of
acetyl-CoA accumulation required for histone acetylation
and homologous recombination-mediated DNA repair (Wel-
len et al., 2009; Linder and Mostoslavsky, 2017; Sivanand
et al., 2017) (Fig. 3).

During growth factor stimulation or adipocyte differentia-
tion, glucose affects histone acetylation and fatty acid syn-
thesis in an ACLY-dependent manner (Wellen et al., 2009;
Lee et al., 2014; Martinez Calejman et al., 2020). The ratio of
acetyl-CoA and coenzyme A is glucose-sensitive and
determines histone acetylation levels in cancer cells. Acti-
vated AKT (AKT serine/threonine kinase) phosphorylates
ACLY, resulting in sustained histone acetylation under glu-
cose deprivation conditions, and pAKT (Ser473) was posi-
tively correlated with histone acetylation levels in human
glioma and prostate cancers (Lee et al., 2014). The AKT-
ACLY axis also supports the proliferation of KRAS (Kirsten
rat sarcoma 2 viral oncogene homolog)-mutant pancreatic
acinar cells, and inhibition of AKT reduces histone acetyla-
tion and suppresses acinar-to-ductal metaplasia (ADM).
Pancreas-specific deletion of ACLY inhibits ADM and pan-
creatic tumorigenesis without overt metabolic abnormalities
(Carrer et al., 2019). Recently, ACLY was identified as a
novel substrate of caspase-10, which is cleaved by caspase-
10 at the conserved Asp1026 site. Under metabolic stress
conditions, such as glucose starvation, increased caspase-
10 downregulates intracellular lipid levels and represses
GCN5-mediated histone H3 and H4 acetylation by ACLY
cleavage, ultimately inhibiting the expression of tumor-re-
lated proliferative genes and metastatic genes as well as
tumor progression (Kumari et al., 2019). In patient-derived
acute myeloid leukemia (AML) cells, both the substrate and
product of phosphoinositide 3-kinase (PI3K), phosphatidyli-
nositol-(4,5)-bisphosphate (PIP2), and phosphatidylinositol-
(3,4,5)-trisphosphate (PIP3), respectively, bind to ACLY. The
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Src-family kinase (SFK) Lyn directly interacts and phos-
phorylates the tyrosine residues of ACLY. Inhibitors of PI3K,
Lyn, and ACLY action suppress the growth of AML cells by
decreasing H3K9 acetylation levels (Basappa et al., 2020).

Macrophage activation or polarization can be finely tuned
by metabolic shifts. Upon interleukin-4 (IL-4) stimulation,
AKT is activated to enhance glucose utilization in murine
bone marrow-derived M2 macrophages. Histone acetylation
levels at select M2 genes such as Arg1, Retnla and Mgl2,
are increased through AKT-phosphorylated ACLY. SB-
204990, the inhibitor of ACLY, indeed suppressed the
induction of IL-4/AKT-dependent M2 genes (Covarrubias
et al., 2016; Williams and O’Neill, 2018). However, in human
monocyte-derived macrophages, ACLY is not required for IL-

4-induced macrophage polarization, although pharmacolog-
ical ACLY inhibitors suppress IL-4-induced target gene
expression, suggesting off-target effects of ACLY inhibitors
(Namgaladze et al., 2018). It’s known that tumor-associated
macrophages (TAMs) create an inflammatory environment
that facilitates survival and proliferation of tumor cells, but the
role of ACLY-mediated metabolic rewiring of macrophages in
tumorigenesis remains unclear. Understanding what condi-
tions within tumors affect the IL-4-AKT-ACLY signaling axis
may provide new insights into the role of macrophages in
tumor progression. Therefore, tumor microenvironment plays
an important role in determining macrophage activity.

Toll-like receptor 4 (TLR4) is an important sensor that
recognizes lipopolysaccharide (LPS). Upon LPS recognition,

Figure 3. Compartmentalized acetyl-CoA metabolism in chromatin regulation. Under stimulation or stress conditions,

mitochondrial-localized PDC and cytosol-localized ACLY and ACSS2 may translocate into the nucleus for the generation of the

nuclear acetyl-CoA pool, mediating global histone acetylation (left). In certain cases, PDC binds with PKM2 and p300 to generate a

large complex in the nucleus. In this large nuclear complex, the pyruvate kinase activity of PKM2 controls the production of pyruvate

from PEP, and nuclear PDC further catalyzes the reaction in which pyruvate produces local acetyl-CoA to support the histone

acetylation modification at special gene enhancers controlled by p300 (right).
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TLR4 promotes the secretion of inflammatory factors and
interferon by recruiting four signaling adaptor molecules,
including MyD88 (myeloid differentiation primary-response
protein 88), MAL (MyD88-adaptor-like protein, also called
TIR domain-containing adaptor protein (TIRAP)), TRIF (TIR-
domain-containing adaptor protein-inducing IFNB), and
TRAM (TRIF-related adaptor molecule). LPS stimulation
induces the metabolic reprogramming of glycolysis and the
TCA cycle, leading to the accumulation of synthetic citrate
and an increase in the acetyl-CoA pool in bone marrow-
derived macrophages (BMDMs). MyD88 and TRIF signaling
drives LPS-induced ACLY phosphorylation and histone
acetylation, and ACLY activation is critical for histone
acetylation at the IL12b gene locus and for facilitating
enhancer chromatin accessibility in response to LPS stimu-
lation (Lauterbach et al., 2019; Williams and O’Neill, 2020).
IL-2-induced ACLY phosphorylation and ACLY activation are
required for T-cell proliferation, and inhibition of ACLY by SB-
204990 induces G1/S cell cycle arrest and suppresses the
accumulation of histone acetylation levels in IL-2-treated T
cells (Osinalde et al., 2016). This study suggests that acti-
vation of ACLY in T cells can inhibit tumor growth by pro-
moting the proliferation of T cells.

ACSS Glucose-derived pyruvate is the major source of
acetyl-CoA generation. In rapidly proliferating cells or
hypoxic cells, however, pyruvate preferentially converts to
lactate and does not enter mitochondria to produce acetyl-
CoA. With findings similar to those showing ACLY-deficient
budding yeast reliance on acetate for acetyl-CoA synthesis
(De Virgilio et al., 1992; van den Berg et al., 1996; Takahashi
et al., 2006), Comerford et al. showed that ACSS2 is the
major enzyme required for acetate uptake and utilization and
further incorporation into lipids and for histone acetylation in
mammalian cells. ACSS2-knockout (KO) reduced the
tumorigenesis of hepatocellular carcinoma in a mouse
model, and ACSS2 expression was significantly elevated in
hepatocellular tumors of mice and in a variety of human
tumor samples, including breast, ovarian, and lung cancer
tissues, as determined by immunohistochemical (IHC)
staining (Comerford et al., 2014). Glucose oxidation con-
tributes less than 50% of the carbon to the acetyl-CoA pool
in human brain tumors (Maher et al., 2012), and 13C-acetate
is oxidized in primary and metastatic mouse glioblastomas
(GBMs) in situ even with the simultaneous coinfusion of
available 13C-glucose. ACSS2 expression is required for the
incorporation of 13C-acetate into glutamate and is positively
correlated with the malignancy of GBM (Lyssiotis and
Cantley, 2014; Mashimo et al., 2014).

Under metabolic stress, such as hypoxia and lipid-de-
pleted conditions, induced ACSS2 expression promotes the
uptake and utilization of acetate to produce acetyl-CoA,
which further contributes to fatty acids and supports the
biosynthesis of membrane phospholipids. Nuclear-localized
ACSS2 maintains the levels of histone acetylation (Schug
et al., 2015; Bulusu et al., 2017) (Fig. 3). Exogenous acetate

addition rescues the hypoxia-induced decrease in histone
acetylation and epigenetically activates lipogenic genes,
such as fatty acid synthase (FASN) and acetyl-CoA car-
boxylase 1 (ACACA). The high expression of ACSS1 and
ACSS2 in hepatocellular carcinoma is critical for acetate-
mediated histone acetylation and de novo lipogenesis (Gao
et al., 2016). AMPK phosphorylates ACSS2 at S659 and
promotes its nuclear translocation under glucose deprivation
conditions. In the nucleus, ACSS2 binds to transcription
factor EB (TFEB) at the promoter regions of lysosomal and
autophagy-associated genes and further promotes H3
acetylation and the expression of these genes by locally
producing acetyl-CoA from acetate (Li et al., 2017a; Li et al.,
2017b). Similar to the yeast system, ACLY-deficient cancer
cells primarily use acetate to supply abundant acetyl-CoA by
upregulating ACSS2 (Zhao et al., 2016).

Lactate promotes histone acetylation and gene expres-
sion in cell culture as an endogenous HDAC inhibitor.
Latham et al. found that the effect of lactate, trichostatin A
(TSA) and butyrate on gene expression was similar, sug-
gesting that the three of them had a common HDAC inhibi-
tion mechanism (Latham et al., 2012). Lactate is known to
promote tumorigenesis by providing ATP, acidifying
microenvironment, recycling, and immunosuppression.
Therefore, the role and contribution of lactate-mediated
histone acetylation in tumorigenesis still need further study.
Butyrate is a short-chain fatty acid produced by the fer-
mentation of dietary fiber by the gut microbiota in the colon
(Scheppach and Weiler, 2004; Hamer et al., 2008). High
levels of butyrate in the lumen are the major energy sources
that are metabolized to acetyl-CoA by ACLY for the prolif-
eration of normal colonocytes and cancerous colonocytes
(Roediger, 1982; Fleming et al., 1991; Donohoe et al., 2012).
Butyrate-derived acetyl-CoA induces histone acetylation and
regulates gene expression by stimulating HATs and inhibiting
HDACs in an ACLY-dependent and ACLY-independent
manner, respectively (Donohoe et al., 2012). β-Hydroxybu-
tyrate (β-OHB) is a byproduct of the oxidation of fatty acids.
In addition to serving as energetic metabolites, β-OHB has
been increasingly shown to promote protein acetylation as a
signaling metabolite in two ways. On one hand, the cata-
bolism of β-OHB into acetyl-CoA increases the intracellular
acetyl-CoA concentration, which favors the acetylation of
histone and nonhistone proteins. On the other hand, under
fasting or calorie restriction conditions, endogenous β-OHB
binds and inhibits class I histone deacetylase, promotes the
acetylation of Lys9 and Lys14 of histone H3 and activates
gene transcription controlled by the transcription factor
FOXO3a (forkhead box O3A), which is associated with the
longevity of a variety of organisms (Shimazu et al., 2013).
These findings support the increase in β-OHB concentration
observed in mammals during caloric restriction and the
resistance of cells to oxidative stress under these conditions.
In studies of Drosophila, nematodes, and yeast, class I
HDACs have been implicated in the life-extending effects of
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caloric restriction, suggesting that an environment that
increases the β-OHB concentration (e.g., caloric restriction)
may extend life by inhibiting class I HDACs.

NAD+ metabolism and acetylation regulation

NAD+ serves as a cofactor of sirtuins during the deacetyla-
tion of lysine residues, and it plays important roles in
enhancing mitochondrial function and protecting liver and
kidney tissues from injury (Katsyuba et al., 2018). NAD+ is
mainly synthesized from the tryptophan, Preiss-Handler, or
nicotinamide (NAM) salvage pathways, with the latter path-
way contributing the majority of NAD+ (Verdin, 2015; Yang
and Sauve, 2016). The NAD+/NADH ratio is closely related
to the acetylation state and energy state. High glycolytic cells
often generate a low NAD+/NADH ratio, thereby resulting in
the repressed activity of sirtuins, especially SIRT6 which
binds NAD+ with relatively high affinity (K(d) = 27 ± 1 μmol/L)
in the absence of an acetylated substrate (Pan et al., 2011;
Madsen et al., 2016). Under stress and nutrient restriction
conditions, NAM phosphoribosyltransferase (NAMPT) is
induced and protects cells against death induced by geno-
toxic stress in a SIRT3- and SIRT4-dependent manner (Yang
et al., 2007). In Ndufs4 (NADH dehydrogenase [ubiquinone]
iron-sulfur protein 4)-KO mice, mitochondrial complex I loss
leads to reduced NAD+ levels. The addition of nicotinamide
mononucleotide (NMN), the precursor of NAD+, or cell-per-
meable α-KG increases the lifespan of Ndufs4-KO mice by
promoting protein hyperacetylation (Lee et al., 2019). In
addition to affecting acetylation, NAD levels also regulate
methylation status. Lozoya et al. found that depletion of
mitochondrial DNA (mtDNA) leads to DNA hypermethylation
by reprogramming the methionine cycle and increasing SAM
levels, almost all of which can be rescued by maintaining
mitochondrial NADH oxidation (Lozoya et al., 2018).

Acetylation regulates the location, activity and function
of transcription factors and metabolic enzymes

Using 13C-labeled glucose and gas chromatography mass
spectrometry (GC/MS) analysis, the oncogene c-Myc was
demonstrated to promote fatty acid biosynthesis and H4K16
acetylation by inducing mitochondrial acetyl-CoA generation
(Morrish et al., 2010; Edmunds et al., 2014). C-Myc interacts
with p300 through its TAD (transcription activation domain),
and the Myc-Max complex can be acetylated by p300 and
GCN5 (general control of amino acid synthesis 5-like 2 in
Yeast). In addition, p300 is recruited by c-Myc to the pro-
moter as a coactivator of the human telomerase reverse
transcriptase (hTERT) gene to promote transcription (Faiola
et al., 2005). Hypoxia-inducible factor 1α (HIF-1α), the
master regulator of the hypoxic microenvironment, is acety-
lated by p300/CBP-associated factor (PCAF) and deacety-
lated by SIRT1. SIRT1 inhibits HIF-1α activity by blocking
p300 recruitment, leading to downregulated glycolysis and
retarded tumor growth (Lim et al., 2010).

In addition, the activities of many metabolic enzymes are
regulated by acetylation modulation (Choudhary et al., 2009;
Zhao et al., 2010). For example, the enzyme activity of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is
increased when it is acetylated at K254 by PCAF acetyl-
transferase (Li et al., 2014). PCAF-mediated K117 and K251
acetylation of GAPDH is necessary for its nuclear localiza-
tion after apoptotic stimulation (Ventura et al., 2010). Mito-
genic and oncogenic signaling induces p300-mediated
acetylation of PKM2 at the K433 residue, promoting PKM2
protein kinase activity and nuclear translocation by pre-
venting its dimer-to-tetramer transition (Lv et al., 2013).
Acetylation regulates glucogenesis and PPP by modulating
the activity of phosphoenolpyruvate carboxykinase (PEPCK)
and 6PGD, respectively (Jiang et al., 2011; Shan et al.,
2014). Glucose at high levels stabilize ACLY by inducing
PCAF-mediated acetylation at lysine 540, 546, and 554.
Acetylated ACLY promotes de novo lipid synthesis, cell
proliferation, and tumor progression in lung cancer (Lin et al.,
2013). Long-chain acyl-CoA dehydrogenase (LCAD), a key
mitochondrial fatty acid oxidation enzyme, is a direct target
of SIRT3. Hyperacetylation of LCAD at lysine 42 in SIRT3-
knockout mice reduced LCAD enzyme activity (Hirschey
et al., 2010), and acetylation of lysine residue 318 and 322 of
LCAD are two other SIRT3-targeted sites (Bharathi et al.,
2013). Branched-chain amino acid transaminase 2 (BCAT2),
the rate-limiting enzyme of BCAA metabolism, is acetylated
at K44 by CREB-binding protein (CBP). This PTM modula-
tion of BCAT2 promotes its degradation and suppresses
BCAA catabolism and pancreatic cancer progression (Lei
et al., 2020). Please see Table 1 for more details.

Metabolic control of (histones) proteins and DNA
methylation

Writers, readers, and erasers of proteins and DNA
methylation

Methylation extensively regulates cellular physiology by
modulating the status and activity of proteins (histone) but
also of DNA and RNA. Histone methylation ranging from
mono- to trimethylation occurs at lysine or arginine residues
in H3 and H4 (Di Lorenzo and Bedford, 2011; Kinnaird et al.,
2016; Guccione and Richard, 2019). There are only eight
residues (H3K4/9/18/23/27/36/79 and H4K20) that undergo
significant methylation modulation, but each lysine can
support mono-, di-, or trimethylation (Haws et al., 2020).
These histone methylation marks can activate or repress
gene expression, depending on the types of residues, the
number of methyl group(s) added, and the location within the
N-terminal regions of H3 or H4 involved (Greer and Shi,
2012). For instance, the methylation of H3K4 and H3K79 is
generally associated with transcriptional activation, while
H3K9 and H3K27 methylation suppresses gene transcription
(Etchegaray and Mostoslavsky, 2016).
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Histone methyltransferases (HMTs), as writers of histone
methylation, catalyze the methylation reaction in a site-
specific manner, mainly on the ε-amino group of lysine
residues. Histone demethylases (HDMs) serve as erasers
that remove methyl groups from histones. The first identified
HDM was lysine-specific histone demethylase 1 (LSD1, also
known as KDM1A) in 2004. LSD1 utilizes FAD (also known
as vitamin B2) as a cofactor to oxidize the methylated lysine
ε-amino to remove methyl groups and produce FADH2 (Shi
et al., 2004; Anand and Marmorstein, 2007; Greer and Shi,
2012), but LSD1 catalyzes only the removal of methyl groups
on mono- or dimethylated lysine residues. Jumonji C (JmjC)
domain-containing demethylases (JHDM or Jmj-KDM) are
other HDMs that function through a ferrous (Fe2+)- and α-
KG-dependent dioxygenase mechanisms and are critical for
the removal of methyl groups in all three forms (Anand and
Marmorstein, 2007; Dimitrova et al., 2015). Methylated lysine
residues are recognized by “reader” proteins containing
methyl-lysine-binding motifs, including PHD, Tudor, PWWP,
WD40, BAH (bromo adjacent homology), ADD (ATRX-
DNMT3-DNMT3L), chromodomain (CD), double chromod-
omain (DCD), tandem Tudor domain (TTD), ankyrinrepeat,
MBT (malignant brain tumor), and zn-CW (zinc finger CW)
domains. These “reader” proteins have the ability to distin-
guish target methyl-lysines based on their methylation state
and surrounding amino acid sequences (Yun et al., 2011;
Musselman et al., 2014; Hyun et al., 2017) (Fig. 2).

In human DNA, the DNA base, especially in CpG islands,
can be methylated at the fifth carbon of cytosine (5mC/5-
methylcytosine) by DNA methyltransferases (DNMTs), usu-
ally resulting in transcriptional repression (Bergman and
Cedar, 2013). DNA methyltransferase (writer) enzymes,
including DNMT1, DNMT3a, and DNMT3b, are major play-
ers in the methylation of 5mC at gene promoters (Greenberg
and Bourc’his, 2019). Similar to histone methylation, DNA
methylation is also a reversible epigenetic modification. Ten-
eleven translocation enzymes TET1, TET2, and TET3
(erasers), which rely on Fe2+ and α-KG as co-substrate and
cofactor, drive the demethylation of DNA (Pastor et al.,
2013). DNA methylation is recognized by methyl-binding
proteins (MBPs) (readers), including methyl-CpG-binding
protein 2 (MeCP2), MBD1, MBD2, MBD3, MBD4, MBD5,
MBD6, SET domain bifurcated 1/2 (SETDB1/2), or bro-
modomain adjacent to zinc finger domain 2A/B (BAZ2A/B)
(Mahmood and Rabbani, 2019) (Fig. 2).

All HMTs and DNMTs require the intermediary metabolite
SAM as a methyl donor for both histones and DNA (Taku-
sagawa et al., 1996). Ferrous and α-KG are essential sub-
strates and cofactors for HDMs and TETs. Other TCA cycle
intermediary metabolites, such as 2-HG (2-hydroxyglu-
tarate), succinate and fumarate, are also involved in the
methylation regulation of histones and DNA by inhibiting
HDM and TET activity (Etchegaray and Mostoslavsky, 2016;
Haws et al., 2020) (Fig. 2). Although RNA can also be
methylated, we focus on discussing how histone and DNA
methylation are regulated by SAM derived from one-carbonTa
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metabolism (methionine, threonine, and serine metabolism)
and other intermediary metabolites derived from the TCA
cycle.

One-carbon metabolism is directly linked to chromatin
dynamics

S-adenosyl methionine (SAM) and methylation Major com-
ponents of one-carbon metabolism are the methionine cycle
and folate cycle. SAM, generated in the methionine cycle, is
the primary methyl group donor for histone or DNA methy-
lation (Fig. 2). In mammalian cells, intracellular SAM
biosynthesis depends on the condensation of methionine
and ATP, which is catalyzed by the rate-limiting enzyme
methionine adenosyltransferase Iα or IIα (MATIα or MATIIα)
(Sakata et al., 1993; Markham and Pajares, 2009; Reytor
et al., 2009). MATIα is expressed specifically in the liver,
whereas MATIα is ubiquitously expressed in various tissues
(Markham and Pajares, 2009). SAM is demethylated to form
S-adenosylhomocysteine (SAH), which is further converted
to homocysteine after deadenylation by S-adenosyl homo-
cysteine hydrolase (SAHH). Homocysteine accepts carbon
from the folate cycle through 5-methyltetrahydrofolate
(mTHF) to generate methionine, resulting in a full turn of the
methionine cycle (Locasale, 2013).

SAM is a universal methyl donor and is utilized by
methyltransferases to methylate DNA, RNA, metabolites,
and proteins, including histones. Methionine metabolism
regulates the genomic architecture, chromatin dynamics and
gene expression by dynamically modulating trimethylation at
lysine 4 on histone H3 (H3K4me3) in both mice with normal
physiology and human cancer cells (Dai et al., 2018). Under
methionine-limiting conditions, SAM, SAH and the SAM/SAH
ratio are dynamically regulated, which reduces the
H3K4me3 level and affects the expression of methylation-
related enzymes (Mentch et al., 2015). In immortalized
mouse embryonic fibroblasts (iMEFs), THP-1 cells, and
mouse hepatoma (Hepa-1) cells, MATIIα represses
cyclooxygenase 2 (COX-2) expression at the mRNA level.
Specifically, MATIIα interacts with the histone H3K9
methyltransferase SETDB1, leading to the accumulation of
H3K9me3 at the COX-2 locus and the repression of the
COX-2 gene (Kera et al., 2013). MATIIα also interacts with
the transcription factor MafK in the nucleus and acts as a
transcriptional corepressor of MafK by affecting the levels of
H3K4me2 and H3K9me2. MATIIα is involved in the MafK-
mediated suppression of heme oxygenase-1 (HO-1) (Katoh
et al., 2011). Moreover, SAM was reported to be involved in
innate immunity by regulating H3K4me3 levels in C. elegans
(Ding et al., 2015). Recently, Bian et al. found that tumor
cells can absorb a large amount of methionine through the
methionine transporter SLC43A2, and competition results in
methionine deficiency in T cells, thus affecting epigenetic
changes, including loss of H3K79me2 in T cells and
impairing the effector function of T cells (Bian et al., 2020).

Glycine N-methyltransferase (GNMT), the most abundant
liver methyltransferase, is a SAM-buffering enzyme that
catalyzes the transfer of a methyl group from SAM to glycine
to form sarcosine, leading to SAM depletion and sarcosine
accumulation (Obata et al., 2014; Serefidou et al., 2019).
Martinez-Chantar et al. showed that deletion of GNMT in
mice induces the hypermethylation of DNA and histones,
resulting in steatosis, fibrosis, and hepatocellular carcinoma
(Martinez-Chantar et al., 2008). However, Liao et al. found
global hypomethylation of DNA in GNMT-knockout mice. In
their opinion, decreased DNA methylation is associated with
decreased DNMT activity and aberrant DNMT1 and
DNMT3b expression (Liao et al., 2009). Hughey et al. also
found that elevated SAM promotes polyamine synthesis,
polyamine catabolism, transsulfuration, and de novo lipo-
genesis in GNMT-knockout mice (Hughey et al., 2018).
Threonine, as the only amino acid critical for the pluripotency
of mouse embryonic stem cells (mESCs), regulates stem cell
fate by regulating their methylation status. Depletion of
threonine from the culture medium or knocking down thre-
onine dehydrogenase (TDH) by shRNAs in mESCs
decreased the levels of SAM and H3K4me3, leading to
slowed growth and increased differentiation (Shyh-Chang
et al., 2013).

Folate is a well-documented metabolite in DNA methyla-
tion (Crider et al., 2012; Ly et al., 2012). Diets low in folate
cause genomic DNA hypomethylation, which can affect DNA
stability and gene expression and increase the risk of neo-
plasia. Physiological intake of folic acid can reverse this
phenomenon in patients with colorectal adenocarcinoma
(Pufulete et al., 2005). Folate supplementation effectively
decreased the degree of DNA hypomethylation of the rectal
mucosa, but only in patients with a single polyp (Cravo et al.,
1998). Similar to many other metabolites, folate can be
detected in the nucleus (Zamierowski and Wagner, 1977). In
the nucleus, folate is bound to LSD1 and protects LSD1 from
inhibition by formaldehyde (Luka et al., 2011; Luka et al.,
2014). In mice treated with a folate-deficient diet, reduced
folate levels in the liver are associated with increased
methylated H3K4 levels due to decreased LSD1 activity
(Garcia et al., 2016).

Serine and glycine metabolism in methylation regulation
Serine and glycine, which are involved in nucleotide syn-
thesis, methylation reactions, and the generation of GSH
(glutathione) and NADPH (the reduced form of nicotinamide
adenine dinucleotide phosphate), are additional important
one-carbon donors that are integrated with the folate cycle.
In most cultured cells, serine donates its β-carbon atom to
tetrahydrofolate (THF) via serine hydroxymethyltransferases
(SHMTs), generating glycine and 5,10-methylene-THF (me-
THF), which initiates the folate cycle. Serine and glycine
regulate methylation by linking with the folate cycle, which is
coupled to the methionine cycle (Fig. 2). me-THF can also be
produced by the glycine cleavage system (glycine dehy-
drogenase (GLDC) is the major component), in which gly-
cine is cleaved into ammonia, carbon dioxide, and a carbon
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unit, which is involved in the methylation of THF (Locasale,
2013; Yang and Vousden, 2016). Moreover, other nutrient
sources, including threonine, choline, betaine, dimethyl-
glycine, and sarcosine (N-methylglycine), regulate methyla-
tion reactions via their convertion into glycine (Wang et al.,
2009; Locasale, 2013).

Serine can provide one-carbon units to generate
methionine from homocysteine; in addition, ATP (purine)
generated by serine-mediated de novo synthesis is also
involved in the production of SAM from methionine (Fig. 2).
In colorectal cancer cells, methionine is the major methyl
donor, and serine does not directly provide one-carbon units
for methylation under conditions of methionine supplemen-
tation. However, serine availability controls the methyl
transfer from methionine to DNA and RNA because this
process is impeded during serine starvation. In brief, serine-
contributed ATP synthesized de novo (based on serine
availability) is critical for the SAM cycle regardless of whe-
ther methionine is present, and the role of serine is high-
lighted in supporting DNA/RNA methylation through the
maintenance of nucleotide levels (Maddocks et al., 2016;
Parker and Metallo, 2016). The serine-responsive SAM-
containing metabolic enzyme complex (SESAME) is a
supercomplex consisting of pyruvate kinase, serine meta-
bolic enzyme, and SAM synthetases in yeast. The interac-
tion of SESAME with the Set1 H3K4 methyltransferase
complex regulates H3K4 methylation and H3T11 phospho-
rylation (H3pT11) by sensing glycolysis and glucose-derived
serine metabolism (Li et al., 2015b). LKB1 (also known as
STK11) loss and KRAS activation (KRASG12D) synergisti-
cally potentiate glycolysis, serine metabolism, and tumori-
genesis. In LKB1-deficient cells, the activated de novo
serine biosynthesis pathway promotes DNA methylation.
LKB1 loss decreases phosphoserine aminotransferase 1
(PSAT1)-mediated DNA methylation and retrotransposon
expression, important modulators of host gene expression.
Tumor-bearing mice with LKB1 loss and human LKB1-mu-
tant pancreatic tumor cells are more sensitized to DNMT
knockdown or DNMT inhibitor decitabine treatment, which
inhibits serine biosynthesis and DNA methylation (Kottakis
et al., 2016). More recently, another serine biosynthesis
enzyme, SHMT2, was reported to initiate lymphoma devel-
opment by epigenetically silencing tumor suppressors. The
SHMT2 gene is amplified in human B cells. Elevated SHMT2
expression in human and mouse follicular lymphoma (FL),
the most common form of B-cell lymphoma, is controlled by
MYC, and a similar mechanism has been reported in hep-
atoma carcinoma cells (Sun et al., 2015). SHMT2 activation
induces SAM synthesis to promote DNA and histone
methylation, leading to promoter silencing of previously
unappreciated tumor suppressor genes, such as SAM and
SH3 domain-containing protein 1 (SASH1) and protein tyr-
osine phosphatase receptor type M (PTPRM), and the initi-
ation of lymphomagenesis (Parsa et al., 2020).

TCA cycle-derived intermediary metabolites regulate
methylation status

α-KG regulates histone and DNA methylation Although the
TCA cycle is known to play central roles in ATP production, it
is also now appreciated as a source of biosynthetic precur-
sors and chemical intermediates (DeBerardinis et al.,
2008a). α-KG, also known as 2-oxoglutarate (2-OG), is
generated from isocitrate in a reaction catalyzed by cyto-
plasmic IDH1 (isocitrate dehydrogenase 1) or mitochondrial
IDH2 and IDH3, accompanied by the production of NADPH
from NADP. α-KG is a cosubstrate required for the histone
demethylase JHDM and DNA demethylase TETs, as
described above (Fig. 2). In addition to isocitrate, other
amino acids, such as arginine, histidine, proline, and gluta-
mate from glutamine-derived glutaminolysis also mediate α-
KG synthesis (Wise et al., 2011; Metallo et al., 2012; Mullen
et al., 2012; Kaelin and McKnight, 2013). The core region of
solid tumors, such as melanoma and breast cancer, dis-
played low glutamine levels compared with the tumor
periphery, as determined by liquid chromatography-mass
spectrometry (LC-MS) analysis. In patient-derived
V600EBRAF melanoma cells, treatment to ensure low glu-
tamine levels significantly decreased α-KG levels, which led
to the hypermethylation of histone H3, H3K27-mediated
tumor dedifferentiation, and resistance to BRAF inhibitor
treatment. Knocking down the H3K27-specific demethylase
KDM6B mimics the low-glutamine condition and mediates
resistance to PLX4032 (BRAF inhibitor) treatment, and the
opposite results are obtained when H3K27 methyltrans-
ferase EZH2 is knocked down (Pan et al., 2016). Epigenetic
and metabolic reprogramming coordinates the polarization of
macrophages and contributes to their functional plasticity
(Ivashkiv, 2013; O’Neill and Pearce, 2016). Glutamine-
derived α-KG is also important for the alternative (M2) acti-
vation of macrophages. A high α-KG/succinate ratio is found
in IL-4-induced M2 macrophages compared to LPS-induced
M1 macrophages. M2 polarization depends on the α-KG–

JMJD3-mediated demethylation of H3K27 (Liu et al., 2017).
Moreover, intracellular α-KG derived from glucose or glu-
tamine promotes H3K27 demethylation and TET-dependent
DNA demethylation, contributing to the maintenance of
embryonic stem cell (ESC) pluripotency (Carey et al., 2015).
PSAT1, a serine biosynthesis transaminase, mediates the
production of α-KG. PSAT1 knockdown is sufficient to
reduce intracellular α-KG and accelerate the differentiation of
mouse ESCs by modulating DNA 5’-hydroxymethylcy-
tosine (5’-hmC) and histone methylation levels (Hwang et al.,
2016).

IDH mutation-induced 2HG regulates DNA and histone
methylation Two independent groups undertaking cancer
genome sequencing projects identified IDH1 mutations in
both glioblastoma multiforme and acute myeloid leukemia in
2008 and 2009, respectively (Parsons et al., 2008; Mardis
et al., 2009). A missense mutation in a single arginine resi-
due, R132, in the enzyme active site is sufficient to cause
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IDH1-related disease alteration. Mutations in IDH2 are also
apparent in GBM and other cancers (Yan et al., 2009). The
R132H substitution of IDH1 (Parsons et al., 2008; Mardis
et al., 2009) and the R172K and R140Q substitutions of
IDH2 (Ward et al., 2010) constitute the majority of mutational
events and lead to the occurrence of GBM, AML, chon-
drosarcoma, cholangiocarcinoma, and angioimmunoblastic
T-cell lymphoma (Cairns and Mak, 2013; Lu et al., 2013).
Mutant IDH1 and IDH2 are oncogenes that catalyze the
conversion of α-KG to 2HG in an NADPH-dependent man-
ner (Dang et al., 2009; Losman and Kaelin, 2013). There are
two enantiomeric forms of 2HG, D-(or R-) and L-(or S-) type
2-HG, all of which are α-KG inhibitors that inhibit α-KG-de-
pendent histone lysine demethylases, such as FIH (factor
inhibiting HIF), PHD2 (prolyl hydroxylase domain-containing
protein, also known as HIF prolyl-hydroxylase 2), and JMJDs
(Chowdhury et al., 2011).

D2HG is the major form in diseases with IDH1 or IDH2
mutants (Dang et al., 2009; Gross et al., 2010). FAD-de-
pendent D-2-hydroxyglutarate dehydrogenase (D2HGDH)
regulates the generation of D2HG in E. coli, yeast, and
human cancer cells (Zhao and Winkler, 1996; Fan et al.,
2015; Lin et al., 2015; Becker-Kettern et al., 2016; Ye et al.,
2018). Leukemic IDH1 and IDH2 mutants induce global DNA
hypermethylation, destroy TET2 function, impair
hematopoietic differentiation, increase the expression of
stem/progenitor cell markers, and ultimately promote malig-
nant transformation (Figueroa et al., 2010). In nontrans-
formed cells, adipocytes, and immortalized astrocytes, the
introduction of either mutant IDH or cell-permeable 2HG
blocks cell differentiation by inducing global and promoter-
specific H3K9 and H3K27 methylation (Lu et al., 2012).

D2HG regulates the HIF-1 signaling axis HIF-1 protein
levels are precisely controlled by PHDs, also known as
Eglnine homologs (EGLNs), which are α-KG-dependent
dioxygenases that function as cellular oxygen sensors. The
R132H mutant of tumor-derived IDH1 showed decreased
catalytic activity due to impaired isocitrate binding and
reduced α-KG levels, leading to elevated HIF-1α protein
levels in human glioblastoma cells (Zhao et al., 2009). An
increase in HIF in IDH-mutant tumors is usually present in
necrotic areas and is presumed to be due to severe hypoxia
(Williams et al., 2011). Losman et al. found that D2HG, but
not L2HG, promotes leukemic transformation in a dose- and
passage-dependent manner. In TF-1 human ery-
throleukemia cells overexpressing the IDH1 R132H mutant,
HIF-1α is diminished due to the agonistic effect of D2HG on
PHDs (Losman et al., 2013; McCarthy, 2013; Ye et al., 2013).
In immortalized human astrocytes and HCT116 colorectal
cancer cells, D2HG stimulates PHD activity by acting as its
cosubstrate, resulting in reduced HIF levels and ultimately
enhancing cell proliferation and transformation (Koivunen
et al., 2012). This regulatory complexity indicates that
D2HG-regulated HIF stability is cell type- and context-de-
pendent (Losman and Kaelin, 2013).

The roles of L2HG in tumor cells and immune cells In
renal cell carcinoma (RCC), accumulated L2HG mediates
epigenetic modifications by serving as an oncometabolite
and an epigenetic modifier. Lower expression of L-2-hy-
droxyglutarate dehydrogenase (L2HGDH) in RCC results in
the accumulation of L2HG and reduces 5hmC levels on
DNA. This outcome is consistent with the 2HG-mediated
suppression of TET enzymes, which convert 5mC to 5hmC.
The re-expression of L2HGDH promotes 5hmC accumula-
tion, reduces H3K27me3 and H3K9me3 levels, and inhibits
the proliferation of RCC cells (Shim et al., 2014). Moreover,
enhanced L2HG production is also found under hypoxic
conditions (Intlekofer et al., 2015; Oldham et al., 2015), and
in turn, L2HG stabilizes HIF-1 protein levels by inhibiting
PHD activity (Koivunen et al., 2012). 13C-labeled glucose or
glutamine assays demonstrated that glutamine-derived α-
KG is critical for hypoxia-induced L2HG generation.
Although IDH controls the generation of D2HG, knocking
down IDH1 or IDH2 did not affect L2HG levels in response to
hypoxia. L2HG levels are modestly decreased by knocking
down MDH1 or MDH2 (malate dehydrogenase), which are
known to convert α-KG to L2HG (Rzem et al., 2007), but
knocking down LDHA (lactate dehydrogenase A) strikingly
decreased L2HG accumulation in hypoxic cells (Intlekofer
et al., 2015). L2HG accumulation is necessary and sufficient
for the activation of H3K9me3 and repressive histone
methylation (Intlekofer et al., 2015) and inhibits electron
transport and glycolysis to alleviate reductive stress (Oldham
et al., 2015). In response to T-cell receptor triggering, the
accumulation of L2HG in mouse CD8+ T cells depends on
the VHL-HIF-LDHA axis and PDK-PDH signaling. In turn,
L2HG stabilizes HIF-1α and modulates the global histone
H3K27me3. L2HG induction or supplementation enhances
the proliferation, long-term persistence and antitumor
capacity of adoptively transferred CD8+ Tcells (Tyrakis et al.,
2016; Cairns and Mak, 2017).

Fumarate and succinate antagonize the roles of α-KG In
addition to IDH1 and IDH2, germinal and somatic mutations
of fumarate hydratase (FH) and succinate dehydrogenases
(SDHA, SDHB, SDHC, SDHD, and SDHAF2), encoding FH
and SDH enzymes, are common in a number of human
cancers (Baysal et al., 2000; Astuti et al., 2001; Hao et al.,
2009; Kaelin, 2009; Bayley et al., 2010; Oermann et al.,
2012). Accumulated fumarate and succinate resulting from
FH and SDH mutations share structural similarity with α-KG.
Both fumarate and succinate increase global histone
methylation and HIF-1α protein levels and reduce endostatin
in cultured cells by inhibiting the activity of α-KG-dependent
KDMs. In addition, TET-mediated 5hmC production is
decreased by knocking down FH or SDH or supplementation
with fumarate or succinate. These epigenetic alterations
induced by FH or SDH loss contribute to tumorigenesis (Xiao
et al., 2012). The epithelial-to-mesenchymal transition (EMT)
has been implicated in tumor progression and metastasis. In
human FH-deficient UOK262 cells, mesenchymal markers,
including Snai2, Zeb1 and Zeb2, are induced, and the re-
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expression of FH reverses the expression of these markers.
Fumarate inhibits the TET-mediated demethylation of anti-
metastatic miR-200, leading to the induction of EMT-related
transcription factors and enhanced migratory potential of
renal cancer (Sciacovelli et al., 2016).

Oncometabolites hinder DNA repair Recently, two studies
by Sulkowsk et al. suggested that IDH, FH, or SDH mutation-
induced accumulation of 2-HG, fumarate, or succinate sup-
presses the homologous recombination (HR) DNA repair
pathway in gliomas and AML with mutant IDH, hereditary
leiomyomatosis and renal cell cancer (HLRCC), and succi-
nate dehydrogenase-related hereditary paraganglioma and
pheochromocytoma (SDH PGL/PCC) (Sulkowski et al.,
2017; Sulkowski et al., 2018). In 2020, Sulkowsk et al. further
revealed the pathways in which metabolites (2HG, succi-
nate, and fumarate) interfere with DNA repair. By inhibiting
the activity of the histone demethylase KDM4B, tumor cell
metabolites cause the hypermethylation of H3K9me3 at
DNA break sites, thus affecting DNA homology-dependent
repair (HDR). Subsequently, the enrichment of key HDR
molecules TIP60 (tat-interacting protein, also known as his-
tone acetyltransferase KAT5) and ATM (ataxia telangiectasia
mutated) and downstream repair factors at DNA fracture
sites was reduced. This oncometabolite-induced HDR defect
confers intensive sensitivity to poly (ADP-ribose) polymerase
(PARP) inhibitors being tested in clinical trials (Chen and
Xiong, 2020; Sulkowski et al., 2020). Therefore, this study
explains a molecular mechanism of tumor metabolite-in-
duced HDR inhibition and suggests a potential therapeutic
strategy for tumor therapy.

Succinyl-CoA and (histone) succinylation

Research on succinylation stemmed from its role in inhibiting
antibody formation and testing allergic skin responses in
animals that were sensitive to dinitrophenyl-polyline in 1962
(Parker et al., 1962). In the following years, the succinylation
of pepsinogen (Gounaris and Perlmann, 1967), ovalbumin
(Kidwai et al., 1976), and histone amino groups (Pineiro
et al., 1992) was studied in succession. However, it was not
until 2011 that succinylation was identified as a natural PTM
of lysine residues in bacteria by affinity purification with anti-
succinyl lysine antibody (Zhang et al., 2011; Alleyn et al.,
2018; Sreedhar et al., 2020). Succinylation of lysine (Ksucc)
residues converts the cationic lysine side chain into an
anionic chain with large potential impacts on protein struc-
tures, charges, and functions, and this modification is
reversible, dynamic, and evolutionarily conserved in both
prokaryotes and eukaryotes (Xie et al., 2012; Weinert et al.,
2013; Wang et al., 2017b; Kurmi et al., 2018; Wang et al.,
2019a).

TCA cycle-derived succinyl-CoA is the major substrate for
succinylation. Succinyl-CoA can be generated from the TCA
cycle, lipids, and amino acid metabolism (histidine, proline,
glutamine, glutamate, methionine, and the BCAAs iso-
leucine, leucine, and valine) (Hirschey and Zhao, 2015) and

then synthesized by succinyl-CoA synthetase. As early as
1992, Pineiro et al. noticed that the transcriptional properties
of succinylated nucleosomal cores are similar to those of
acetylated particles, which had been observed in 1991
(Pineiro et al., 1991; Pineiro et al., 1992). Defects in the TCA
cycle by the depletion of SDH increase succinyl-CoA, and
subsequent histone hypersuccinylation correlates with active
gene expression (Smestad et al., 2018). The α-ketoglutarate
dehydrogenase complex (α-KGDH) in the nucleus can bind
to lysine acetyl transferase 2A (KAT2A) in gene promoter
regions, and KAT2A binds to succinyl CoA and acts as a
succinyltransferase to succinylate histone H3 on lysine 79. If
the α-KGDH complex is blocked from entering the nucleus or
KAT2A protein expression is inhibited, the expression of
downstream target genes can be reduced, thus inhibiting
tumor growth (Wang et al., 2017b; Wang et al., 2018b; Xu
et al., 2021). Moreover, carnitine palmitoyltransferase 1A
(CPT1A) is found to have lysine succinyltransferase activity
upon the succinylation of S100A10 in gastric cancer (Kurmi
et al., 2018; Wang et al., 2019a). These studies showed that
the nonmetabolic functions of α-KGDH and CPT1A play
important roles in tumor progression. Although succinyl-CoA
is mainly synthesized in mitochondria, cytosolic succinate is
converted back to succinyl-CoA (Alarcon et al., 2002), a
result that reasonably explains how proteins undergo lysine
succinylation in the cytoplasm and nucleus.

KAT2A and CPT1A are writers of protein succinylation,
and SIRT5 has been identified as an eraser of Ksucc by
catalyzing the hydrolysis of succinyl lysine in vitro and
desuccinylating several mammalian proteins, such as glu-
tamate dehydrogenase (GDH), malate dehydrogenase, and
citrate synthase (CS), that were identified by mass spec-
trometry to have been modified by succinylation (Du et al.,
2011) (Fig. 2). SIRT7 was identified as another histone
desuccinylase, especially in response to DNA damage (Li
et al., 2016). The YEATS domain of GAS41 recognizes
succinylation as a pH-dependent reader of Ksucc (Wang
et al., 2018a). Park et al. identified 2,565 succinylation sites
on 779 proteins regulated by SIRT5 in mammalian fibrob-
lasts and liver tissues, and found that diverse mitochondrial
and nonmitochondrial metabolic enzymes can be succiny-
lated (Park et al., 2013). Most of the 2,565 succinylation sites
do not overlap with acetylation sites; however, thousands of
succinylation sites mapped by Weinert et al. in diverse
organisms including bacteria, yeast, and human cells,
extensively overlap with acetylation sites (Weinert et al.,
2013). SIRT5 is a mitochondrial protein, and in SIRT5-KO
mice, the mitochondrial lysine succinylome in liver tissues is
significantly changed. The metabolic pathways of fatty acid
β-oxidation and ketogenesis are highly targeted by SIRT5.
Lack of SIRT5 impairs β-oxidation and promotes the accu-
mulation of acylcarnitines. 3-Hydroxy-3-methylglutaryl-CoA
synthase 2 (HMGCS2), the rate-limiting enzyme of ketoge-
nesis, is hypersuccinylated in the absence of SIRT5, but this
modification of HMGCS2 inhibits its activity and reduces
ketone body production (Rardin et al., 2013). IDH1 mutant-
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induced production of 2-HG inhibits SDH activity and pro-
motes hypersuccinylation in mitochondria, which induces
cancerous metabolism and apoptosis resistance (Li et al.,
2015a). These results demonstrate that SIRT5 is a global
regulator of lysine succinylation in the cytosol, mitochondria,
and nucleus and indicate mechanisms for preventing
tumorigenesis by modulating protein succinylation (Park
et al., 2013; Rardin et al., 2013; Stram and Payne, 2016;
Carrico et al., 2018).

PKM2, a notable metabolic enzyme, is succinylated at
lysine 498 (K498), which increases PKM2 activity and sen-
sitizes cells to oxidative damage by decreasing cellular
NADPH production. These processes are reversed by
SIRT5, which is critical for PKM2 desuccinylation by binding
to PKM2 at K498 (Xiangyun et al., 2017). However, under
nutrient stress conditions, such as glucose starvation, K433
succinylation of PKM2 promotes its translocation to mito-
chondria, whereas succinylation of K498 has no effect on
this process. Mitochondrial PKM2 prevents the degradation
of voltage-dependent anion channel 3 (VDAC3) and
increases mitochondrial permeability to generate more ATP
for cell survival under glucose starvation conditions (Qi et al.,
2019). In addition, UCP1 (mitochondrial uncoupling protein
1) is a novel target of SIRT5-mediated desuccinylation
recently identified in brown fat tissues in SIRT5-KO mice
(Wang et al., 2019b). ACOX1 (acyl-CoA oxidase 1) and
IDH2 are desuccinylated by SIRT5 in response to oxidative
damage (Zhou et al., 2016; Chen et al., 2018b). SIRT5 also
inhibits ubiquitin-mediated glutaminase (GLS) degradation
by desuccinylating glutaminase, thereby regulating mito-
phagy and tumorigenesis (Polletta et al., 2015; Greene et al.,
2019).

SDHA, which mediates succinate dehydrogenation, is a
direct target of SIRT5, and desuccinylation of SDHA by
SIRT5 suppresses SDH activity and cellular respiration
(Park et al., 2013). Succinate has been shown to act as a
proinflammatory metabolite that accumulates in LPS- or
interferon-γ (IFN-γ)-treated macrophages (Tannahill et al.,
2013; Jha et al., 2015). LPS-induced glutamine-derived
succinate stabilizes HIF-1α protein expression, which is
critical for LPS-induced interleukin-1β (IL-1β) transcription. A
twofold increase in protein succinylation, such as MDH, was
discovered in LPS-treated macrophages, a result that can be
explained by an increase in succinate and a decrease in the
expression of desuccinylase SIRT5 in macrophages (Tan-
nahill et al., 2013). Analogous to its status in tumors, PKM2
is succinylated in macrophages. The succinylation of PKM2
at K311 inhibits PKM2 enzyme activity and promotes its
nuclear translocation in dimer form. In the nucleus, by per-
forming nonmetabolic functions, the dimeric form of PKM2
binds to HIF-1α to promote the transcription of IL-1β.
Desuccinylation of PKM2 by SIRT5 blocks LPS-induced IL-
1β expression to prevent DSS (dextran sodium sulfate)-in-
duced colitis in mice (Wang et al., 2017a).

Ketone body-derived β-hydroxybutyrate modulates
protein hydroxybutyrylation

Ketone bodies contain three different molecules, acetone,
acetoacetate (AcAc), and β-OHB, which are byproducts of
the oxidation of fatty acids in the liver to provide energy for
the heart and brain under fasting conditions (Newman and
Verdin, 2014a, b, 2017). In addition to serving as energy
metabolites and promoting protein acetylation, as mentioned
above, Xie et al. discovered a novel epigenetic modification,
histone lysine β-hydroxybutyrylation (Kbhb), which is closely
related to ketone body metabolism (Fig. 2). The researchers
found significant increases in histone lysine β-hydroxybu-
tyrylation modification in mouse liver cells but no change in
acetylation modification that is mainly derived from glucose
metabolism under fasting conditions. Further ChIP-qPCR
(chromatin immunoprecipitation (ChIP) coupled with quanti-
tative PCR) assays and ChIP-seq data showed that with the
increase in histone Kbhb modification, the expression of
some genes related to physiological responses to fasting
was upregulated, such as amino acid catabolism, redox
balance, circadian rhythm, and PPAR (peroxisome prolifer-
ator-activated receptor) signaling (Xie et al., 2016). Histone
acyltransferase p300 acts as a writer to mediate histone β-
hydroxybutyrylation (Kaczmarska et al., 2017), and human
SIRT3 acts as an eraser to selectively remove histone β-
hydroxybutyrylation with a preference for H3K4, K9, K18,
K23, K27, and H4K16 but has no activity with H4K5, K8, and
K12, which distinguishes it from Zn-dependent class I
HDACs (Abmayr and Workman, 2019; Zhang et al., 2019b).
The Kbhb levels of Lys9 in histone H3 (H3K9bhb) were
reduced in the brains of depressed mice, and exogenous β-
OHB rescued this phenomenon and ameliorated depressive
behaviors of these mice (Chen et al., 2017).

Naïve CD8+ T (Tn) cells can differentiate into CD8+

effector T (Teff) cells after receiving antigen stimulation.
Some Teff cells persist and develop into long-lived CD8+

memory T (Tmem) cells. Fatty acid-mediated oxidative
phosphorylation and phosphoenolpyruvate carboxykinase 1
(PCK1)-mediated glycogen metabolism control the formation
and maintenance of CD8+ Tmem cells (Pearce et al., 2009;
Ma et al., 2018). Recently, Zhang et al. found that acetyl-CoA
in mitochondria indirectly regulates PCK1 expression
through the ketogenesis pathway, and epigenetic modifica-
tion of histones through β-OHB is also critical for the for-
mation of CD8+ Tmem cells (Zhang et al., 2020). Accumulated
β-OHB and AcAc, but not acetone, were found in CD8+ Tmem

cells compared to Tn or Teff cells, as determined by LC-MS
analysis. After β-OHB and AcAc treatment of induced Tcells,
it was found that only β-OHB was specifically involved in the
memory formation of CD8+ Tmem cells, and similar results
were observed in mice treated with a carbohydrate-free
ketogenic diet. Furthermore, β-OHB facilitates CD8+ Tmem

cell formation by upregulating H3K9bhb of Foxo1 and
Ppargc1a (which encodes PGC-1α), two transcription factors
critical for Pck1 expression. These results provide new
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insights into how CD8+ Tmem cells balance energy supply
and redox homeostasis and into their potential clinical
applications for regulating T cell memory.

In addition to the hydroxybutyrylation modification of his-
tones, p53 can undergo hydroxybutyrylation modification in
the presence of β-OHB, and this modification is catalyzed by
histone acetyltransferase CBP/p300 (Kaczmarska et al.,
2017).This modification of p53 was apparent in cells treated
with β-OHB and in thymic tissues of mice whose fasting
resulted in increased serum β-OHB concentration. Hydrox-
ybutyrylation of p53 inhibits its acetylation and reduces the
expression of its target genes, including p21 and PUMA,
ultimately promoting cell proliferation (Liu et al., 2019).

Lactylation is a novel PTM mediated by lactate
and plays roles in addition to lactate metabolism

Lactic acid has long been considered a waste product of
glycolytic metabolism; however, in 2017, two independent
groups recently found that it can be reused as the primary
carbon source for the mitochondrial TCA cycle in normal
tissues and tumors (Faubert et al., 2017; Hui et al., 2017;
Sun et al., 2018). Recently, it was found that lactic acid is
integrated into cell metabolism by inducing dynamic endo-
plasmic reticulum-mitochondrial Mg2+ changes (Daw et al.,
2020). Lactate was also found to promote histone acetylation
and regulate gene expression as an HDAC inhibitor (Latham
et al., 2012). Furthermore, inspired by the wide acylation of
histones by intracellular metabolites, Zhang et al. recently
found that lactic acid can also modify the lysine residues of
histones in a new epigenetic modification known as lactyla-
tion (Zhang et al., 2019a) (Fig. 2). Twenty-eight lysine
lactylation (Kla) sites on core histones, including H3, H4,
H2A, and H2B, were identified in human HeLa cells and
mouse BMDMs. The lactylation of H3 and H4 is p53-de-
pendent and p300-mediated (Fig. 2). Hypoxia and macro-
phage polarization, which are associated with increased
lactate derived from activated glycolysis, can enhance
intracellular histone lactylation. In the late phase of M1
macrophage polarization, increased histone Kla directly
promotes gene transcription and induces homeostatic
genes, including Arg1, a marker of M2 macrophages. Inter-
estingly, the researchers also detected histone lactylation in
macrophages isolated from mouse melanoma and lung
tumors and observed a positive correlation between histone
lactylation and oncogenic production by reparative M2
macrophages. These findings suggest that high lactate and
histone lactylation levels in macrophages may contribute to
tumor formation and progression.

It is surprising that a single metabolite can have such a
powerful effect on immune cell function. The discovery of
histone lactylation and its impact on macrophage biology is a
blueprint for understanding how lactic acid changes other
cell types, unlocking the mysteries of the Warburg effect and
understanding its impact on human disease. Whether cancer

cells and other immune cells, such as T cells, can be regu-
lated through this mechanism is unclear. In addition to can-
cer, the Warburg effect has been observed in other diseases,
including sepsis, autoimmune diseases, atherosclerosis,
diabetes, and aging. Therefore, more studies are needed on
the role and regulation of this newly discovered histone
modification.

ATP-, O-GlcNAc-, citrulline-, and itaconate-mediated
phosphorylation, O-GlcNAcylation, citrullination,
and itaconation

ATP and phosphorylation

In addition to lysine and arginine, serine and threonine can
be extensively modified, such as by phosphorylation and O-
GlcNAcylation. Histone phosphorylation is a dynamic modi-
fication in which phosphate groups are added to residues of
serine or threonine. Phosphorylation was first discovered in
the late 1960s (Kleinsmith et al., 1966; Gutierrez and Hnilica,
1967), and the first histone kinase was discovered in 1968
(Langan, 1968). Only these serine and threonine residues
have established as residues for histone phosphorylation,
but subsequent data suggest that histone tyrosine residues
can also be phosphorylated (Cook et al., 2009; Dawson
et al., 2009; Singh et al., 2009b; Xiao et al., 2009). AMPK is a
sensor of cellular energy status consistent with the ratios of
AMP:ATP and ADP:ATP, and this kinase is activated by an
increase in AMP or ADP but inactivated by ATP (Hardie,
2011; Hardie et al., 2016). Yeast AMPK homolog Snf1 kinase
is required for the phosphorylation of histone H3 at serine 10
(H3pS10) in the promoter of the INO1 gene (Lo et al., 2001).
Mammalian AMPK was reported to phosphorylate histone
H2B at serine 36 (H2BpS36) (Bungard et al., 2010) (Fig. 2).
As a nutrient sensor, AMPK can be activated under a variety
of stress conditions. During glucose deprivation, AMPK is
localized to the promoter of p53 and activates p53-respon-
sive genes, which are essential for cell survival under
metabolic stress. Currently, an increasing number of studies
have recognized the importance of AMPK in tumorigenesis;
therefore, methods to activate AMPK activity, such as exer-
cise, calorie restriction and metformin treatment, have been
identified, and some have been tested in preclinical models
(Steinberg and Carling, 2019).

Histone phosphorylation is associated with many different
cellular processes, such as transcriptional activation, mito-
sis, meiosis, DNA repair, and apoptosis (Cohen et al., 2011).
Although all histones H1, H2A, H2B, H3, and H4 can be
phosphorylated at multiple sites, H3 phosphorylation has
been most widely and intensively studied (Prigent and
Dimitrov, 2003; Nowak and Corces, 2004). H3S10 can be
phosphorylated by a variety of kinases, such as mitogen-
and stress-activated protein kinase 1 and 2 (MSK1 and
MSK2) (Soloaga et al., 2003), ribosomal S6 kinase 2 (RSK2)
(Sassone-Corsi et al., 1999), I κB kinase-α (IKK-α) (Anest
et al., 2003), and PIM1 kinase (Zippo et al., 2007). PIM1
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kinase-mediated H3S10 phosphorylation at the E-box of Myc
target genes is involved in gene activation and contributes to
cell transformation and tumor growth (Zippo et al., 2007).
The overexpression of histone H3 enhanced the neoplastic
cell transformation induced by epidermal growth factor and
cancer development, and histone H3 phosphorylation-me-
diated c-jun and c-fos induction is critical for these processes
(Choi et al., 2005). The phosphorylation of H3S10 is a hall-
mark of mitosis, starting in prophase, reaching its highest
level in metaphase, and then decreasing toward the end of
the cell cycle. Mitotic H3S10 phosphorylation is mainly
controlled by Aurora B (Adams et al., 2001; Giet and Glover,
2001; Richie and Golden, 2005), Aurora A (Kim et al., 2016),
and polo-like kinase 1 (PLK1). Moreover, histone phospho-
rylation regulates tumorigenesis by participating in DNA
damage repair and apoptosis.

O-GlcNAc and O-GlcNAcylation

O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcy-
lation) is a PTM that regulates basic cellular processes.
UDP-GlcNAc (uridine diphosphate GlcNAc), the final product
of the hexosamine biosynthetic pathway (HBP) that inte-
grates glucose, glutamine, amino acid, fatty acid, and
nucleotide metabolism, serves as the donor substrate for O-
GlcNAcylation (Hart et al., 2007; Hart et al., 2011; Ferrer
et al., 2016; Yang and Qian, 2017) (Fig. 2). In contrast to
other PTMs, which are regulated by many writers and era-
sers, glycosylation is regulated by a single pair of enzymes,
O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA).
OGT catalyzes the transfer of GlcNAc from UDP-GlcNAc to
the Ser and Thr residues of target proteins, whereas OGA
catalyzes the hydrolysis of this PTM (Hart et al., 2007; Hart
et al., 2011; Slawson and Hart, 2011) (Fig. 2). In addition to
relying on nutrient metabolism to provide a substrate, O-
GlcNAcylation is sensitive to various types of cellular stres-
ses, such as heat shock, hypoxia, and nutrient deprivation
(Hart et al., 2011; Ferrer et al., 2014; Yang and Qian, 2017).
However, the detailed mechanism by which cells sense
these stresses to induce O-GlcNAcylation and how various
stimuli trigger dynamic changes in protein O-GlcNAcylation
are far from clear. After heat shock, the O-GlcNAcylation of
histones increases rapidly, and this increase is correlated
with an increase in DNA compaction (Sakabe et al., 2010).
By modifying proteins such as nuclear factor-κB (NF-κB),
nuclear factor of activated T cells cytoplasmic 1 (NFATC1)
(Golks et al., 2007), CREB-regulated transcription coactiva-
tor 2 (CRTC2) (Dentin et al., 2008), forkhead box O1
(FOXO1) (Housley et al., 2008), PPARG coactivator 1α
(PGC1α) (Ruan et al., 2012), and RNA polymerase II (Pol II)
(Kelly et al., 1993) or by proteins interacting with HDAC
(Yang et al., 2002), EZH2 (Chu et al., 2014), PRC2 (Gam-
betta et al., 2009), or TET2 (Dehennaut et al., 2014; Lewis
and Hanover, 2014; Singh et al., 2015), O-GlcNAcylation
regulates fundamental cellular processes such as tran-
scription, epigenetic programming, and cell signaling

pathway activation (Hardiville and Hart, 2014; Hart, 2019).
Therefore, in view of its importance in cellular processes, the
disruption of O-GlcNAcylation is related to the pathological
processes of many kinds of tumors. Several studies showed
decreased O-GlcNAc levels in some tumor samples com-
pared with matched adjacent tissues (Slawson et al., 2001),
whereas other studies found accumulated O-GlcNAc,
enhanced O-GlcNAcylation and increased OGT and OGA
expression in breast, lung, and colon tumor tissues com-
pared with the respective corresponding control tissues (Gu
et al., 2010; Mi et al., 2011). A similar phenomenon was
evident in patients with chronic lymphocytic leukemia (Shi
et al., 2010).

There is extensive crosstalk between O-GlcNAcylation
components and those of other common PTMs, such as
phosphorylation, ubiquitylation, acetylation, and methylation.
The interaction of O-GlcNAcylation and phosphorylation
components has been well studied due to the similarly
modified Ser and Thr residues (Hart et al., 2011; Song et al.,
2019). O-GlcNAcylation is found on the Ser and Thr residues
on core histones H2A Thr101, H2B Ser36, and H4 Ser47
which have been identified as phosphorylation sites (Maile
et al., 2004; Olson et al., 2006; Mayya et al., 2009; Sakabe
et al., 2010). Several studies have shown that O-GlcNAcy-
lation can prevent the degradation of target proteins by
inhibiting their ubiquitination through different mechanisms.
For instance, overexpression of OGA in HepG2 cells resul-
ted in the decreased O-GlcNAcylation of AKT and increased
phosphorylation and activity of AKT.O-GlcNAcylation sites in
AKT have been identified as Thr308 and Ser473, key
phosphorylation sites for AKTactivation. These observations
suggest that the O-GlcNAcylation of AKT competes directly
with its phosphorylation (Soesanto et al., 2008; Ruan et al.,
2012; Li et al., 2013; Ruan et al., 2013; Shi et al., 2015).
Because OGA has both a C-terminal histone acetyltrans-
ferase-like (HAT-like) domain and an N-terminal O-GlcNAc
hydrolase domain, O-GlcNAcylation and acetylation can be
regulated reciprocally (Allison et al., 2012; Hayakawa et al.,
2013). Other studies have shown that OGT regulates tran-
scription, especially at transcriptional start sites, in a TET2-
dependent manner, suggesting that O-GlcNAcylation and
DNA methylation synergistically regulate gene transcription
(Chen et al., 2013b; Deplus et al., 2013; Shi et al., 2013;
Vella et al., 2013; Dehennaut et al., 2014; Zhang et al.,
2014).

Citrulline and citrullination

Citrulline is a noncoding amino acid and its metabolism is
categorized into two types: free citrulline from the arginine-
coupled urea cycle and citrullinated proteins. Here, we focus
on the second type of citrulline and discuss the mechanism
and significance of citrullination (also known as arginine
deimination) (Fig. 2). Histone citrulllination affects approxi-
mately 10% of all histone molecules. This less-noticed PTM
converts arginine residues to citrulline by peptidyl-arginine
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deiminase (PAD or PADI) enzymes, resulting in reduced
hydrogen bonding and a looser chromatin structure. PADs
contain five Ca2+-dependent enzymes (PAD 1-4 and PAD6)
(Witalison et al., 2015; Audia and Campbell, 2016; Yuzhalin,
2019) (Fig. 2). Citrullination modification is known to play
essential roles in autoimmune and inflammatory diseases
such as rheumatoid arthritis (Darrah and Andrade, 2018),
periodontitis (Konig et al., 2016), autoimmune
encephalomyelitis (Carrillo-Vico et al., 2010), systemic lupus
erythematosus (Knight et al., 2015), and other diseases such
as multiple sclerosis, atherosclerosis, thrombosis, and
inflammatory bowel disease (Pritzker et al., 2000; Moscar-
ello et al., 2007; Caprariello et al., 2018). PAD4 has been
found to be a prognostic biomarker due to its increased
expression in various solid tumors compared to that on the
respective normal tissues (Chang et al., 2009; Chang et al.,
2011) and in the peripheral blood of patients with lung cancer
(Ulivi et al., 2013). In malignant lymphomas, PAD4 is also
expressed in approximately 40% of cells, suggesting that its
expression is associated with the development of this blood
disease (Chang et al., 2009). Benign and nontumorous
inflammatory tissues do not express PAD4, while metastatic
tumors show higher PAD4 levels than corresponding primary
tumors, suggesting that citrullination plays a role in the pro-
gression of benign tumors to aggressive malignancies
(Yuzhalin et al., 2018). In colon cancer cells, knocking down
PAD4 increases the expression of p53 and its target genes,
leading to cell cycle arrest and cell apoptosis (Li et al., 2008).
Inhibition of PADs by their inhibitor CI-amidine leads to the
upregulation of OKL38 (oxidative stress-induced growth
inhibitor 1), which promotes cell apoptosis and mitochondrial
dysfunction in breast and osteosarcoma cells (Yao et al.,
2008). Another PAD inhibitor, YW3-56, inhibits tumor growth
by interfering with autophagy and regulating the Sestrin
2-mTORC1 signaling axis (Wang et al., 2012).

Among the PAD family members, PAD4 is the only protein
with a nuclear localization signal (NLS) and has been
reported to citrullinate histone H3 (Arg 2, 8, 17, 26), H2A, H4
(Arg 3), and H1 (Arg 54) (Wang et al., 2004; Tanikawa et al.,
2012; Christophorou et al., 2014). The citrullination of H3 has
been reported to open chromatin and promote gene tran-
scription (Fuhrmann and Thompson, 2016), and citrullinated
histone H3, which is mediated by PAD4, plays a vital role in
the release of neutrophil extracellular traps (NETs) (Li et al.,
2010). NETs have been detected in several human cancer
types (Berger-Achituv et al., 2013; Merza et al., 2015; Yang
et al., 2015; Tohme et al., 2016) and have been found to
promote the proliferation and metastasis of cancer cells
(Demers et al., 2016; Albrengues et al., 2018; Monti et al.,
2018). Thålin et al. found that a 3-fold increase in citrullinated
histone H3 is associated with neutrophil activation markers
neutrophil elastase (NE) and myeloperoxidase (MPO) and
the inflammatory cytokines IL-6 and IL-8 in 60 patients with
different advanced cancers (Thalin et al., 2018). Mauracher
et al. found that NET formation is associated with H3 citrul-
lination and the occurrence of venous thromboembolism

(VTE) in cancer patients (Mauracher et al., 2018). These
studies suggest that citrullinated histone H3 is a novel
prognostic marker for cancer detection. Upon chemotherapy
treatment, PAD4 regulates cell apoptosis by interacting with
p53 to citrullinate histone H4 (Arg 3) (Tanikawa et al., 2012).
In addition to p53, calcium homeostasis also regulates PAD
activity, and PAD-mediated citrullination is involved in cal-
cium-mediated apoptosis (Asaga et al., 1998; Mattson and
Chan, 2003; Hsu et al., 2014).

Itaconate and itaconation

Nearly 200 years after Swiss chemist Samuel Baup first
described itaconate (itaconic acid or methylenesuccinic acid)
as a product of citric acid distillation in 1836 (Luan and
Medzhitov, 2016), itaconate was recently rediscovered by
three groups as a microbial metabolite in the mouse lungs
infected by Mycobacterium tuberculosis (MTB) (Shin et al.,
2011), in the supernatant and cell lysates of LPS-activated
RAW264.7 macrophages (Sugimoto et al., 2011) and in the
intracellular compartment of glia-like VM-M3 cells (Strelko
et al., 2011). Itaconate is synthesized from cis-aconitate in
the TCA cycle of macrophages and is activated by a variety
of factors, including LPS and other Toll-like receptor ligands
and cytokines, such as type I and type II interferons (Shin
et al., 2011; Strelko et al., 2011; Sugimoto et al., 2011;
Michelucci et al., 2013). These stimuli increase the expres-
sion of aconitate decarboxylase 1 (ACOD1; also known as
CAD), previously known as immune-responsive gene 1
(IRG1), which is critical for itaconate production (Lee et al.,
1995; Michelucci et al., 2013). IRG1 was recently found to be
induced by steroid hormone progesterone (Cheon et al.,
2003), heme oxygenase-1/carbon monoxide (Uddin et al.,
2016), interferon regulatory factor 1 (IRF1), the ZBP1/RIPK1/
RIPK3/IRF1 axis (Tallam et al., 2016; Daniels et al., 2019)
and BCAT1 (Papathanassiu et al., 2017), and suppressed by
nuclear receptor Nur77 (Nr4a1) (Koenis et al., 2018) or A20
(a negative regulator of NF-κB signaling) (Van Quickel-
berghe et al., 2018). Itaconate, as a signal transducer, exerts
anti-inflammatory effects (Murphy and O’Neill, 2018). The
itaconate signal transduction mechanism is as follows: 1) it
inhibits SDH and counteracts the proinflammatory signals of
succinate (Cordes et al., 2016; Lampropoulou et al., 2016);
2), modifies KEAP1 to activate Nrf2 (Mills et al., 2018); and
3), and induces the ATF3-IκBζ axis, another anti-inflamma-
tory signaling pathway (Bambouskova et al., 2018). The
IRG1-itaconate-SDH axis also links innate immune tolerance
with trained immunity (Dominguez-Andres et al., 2019), and
IRG1 expression is important to prevent immunopathology
during MTB infection (Nair et al., 2018). In glioma patho-
genesis, IRG1 was identified as a novel oncogene that
promotes the growth and tumorigenesis of glioma (Pan et al.,
2014); IRG1-mediated itaconate production potentiates
peritoneal tumor growth, and IRG1 in peritoneal tissue-resi-
dent macrophages (pResMϕ) represents a potential thera-
peutic target for peritoneal tumors (Weiss et al., 2018).
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Recently, itaconate was found to modify KEAP1 and
glutathione (Bambouskova et al., 2018; Mills et al., 2018),
NLRP3 (Hooftman et al., 2020; Qin et al., 2020), ALDOA,
GAPDH and LDHA (Qin et al., 2019), and other proteins
involved in inflammasome, toll-like signaling, cell death, and
DNA damage (Qin et al., 2020). Itaconate contains an
electrophilic α,β-unsaturated carboxylic acid group, which
can alkylate the cysteine residues of proteins to form a 2,3-
dicarboxypropyl adduct via Michael addition. Qin et al. used
a specific thiol-reactive probe, 1-OH-Az, for quantitative
chemoproteomic profiling of cysteine modifications by ita-
conate and identified a total of 260 itaconate-modified cys-
teines in macrophage proteomes and showed that itaconate
can modify key cysteines in glycolytic enzymes to inhibit
glycolysis, which indicates its anti-inflammatory function (Qin
et al., 2019; Yang, 2019). By developing a specific and cell-
permeable bioorthogonal probe, itaconate-alkyne (ITalk), Qin
et al. further characterized the extensive landscape of ita-
conate substrates (1,926 protein targets) in living cells and
described this Michael addition reaction as “itaconation” (Qin
et al., 2020). Moreover, itaconyl-CoA, the coenzyme A (CoA)
derivative of itaconate, inhibits B12-dependent methyl-
malonyl-CoA mutase (MCM) by forming a stable biradical in
MCM and derails its activity and repair ability (Shen et al.,
2017; Ruetz et al., 2019). Although itaconate plays a deci-
sive inflammatory role in activated macrophages and modi-
fies a variety of proteins on cysteine residues (Luan and
Medzhitov, 2016; Murphy and O’Neill, 2018; Nonnenmacher
and Hiller, 2018; O’Neill and Artyomov, 2019; Yu et al.,
2019), it is not clear whether itaconate affects the epigenetic
remodeling of immune cells or tumor cells through itacona-
tion, itaconyl-CoA, or other itaconate-related metabolites;
hence, future studies are warranted in this regard.

TARGETING CHROMATIN MODIFICATIONS
RELATED TO METABOLISM FOR CANCER
THERAPY

Targeting acetylation for cancer therapy

Targeting the epigenetic modulation of histones or DNA to
realize cancer therapy has attracted increased interest for
decades. The most widely studied epigenetic inhibitors are
probably HDAC inhibitors. HDAC inhibitors represent vari-
ous compounds that inhibit the activity of HDACs, leading to
the increased acetylation of lysine residues on histones and
nonhistone proteins. The key effects of HDAC inhibitors on
tumor cells are to induce cell death, cell cycle arrest,
senescence, differentiation, autophagy, and tumor immuno-
genicity (Falkenberg and Johnstone, 2014). The short fatty
acid n-butyrate was found in the mid-1970s by Riggs and
colleagues to induce the differentiation of Friend ery-
throleukemia cells and strong histone hyperacetylation in
HeLa cells (Riggs et al., 1977), and then, the groups of All-
frey and Davie reported that n-butyrate was an HDAC inhi-
bitor (Candido et al., 1978; Vidali et al., 1978). The first US

Food and Drug Administration (FDA)-approved acetylating
modifier, vorinostat (also known as suberanilohydroxamic
acid (SAHA)), was initially identified as a drug that induces
tumor cell differentiation in vitro and was subsequently
identified as an HDAC inhibitor (Richon et al., 1998; Mann
et al., 2007). Vorinostat and another HDAC inhibitor, romi-
depsin, have been approved for use in cutaneous T-cell
lymphoma (CTCL). Romidepsin was also approved for the
treatment of peripheral T-cell lymphoma (PTCL). Their
application in solid tumors has progressed slowly and
remains an active research area. In addition, TSA is a
commonly used HDAC inhibitor but is used only in laboratory
experiments due to its high toxicity.

The pan-inhibitor nicotinamide inhibits all class III HDAC
sirtuins. Sirtinol, cambinol, and EX-527 are specific SIRT1
and SIRT2 inhibitors (Ceccacci and Minucci, 2016; Ecks-
chlager et al., 2017). They can play roles in different types of
neurodegeneration and cancer (Lavu et al., 2008). In 2003,
Sinclair and colleagues first found that resveratrol, a
polyphenol abundant in red wine, is an activator of SIRT1
and was later named STAC (sirtuin-activating compound).
STACs are chemical compounds that use NAD+ to remove
acetyl groups from proteins. Additional results showed that
resveratrol mimics caloric restriction and delays aging by
extending the lifespan of metazoans and yeast (Howitz et al.,
2003; Wood et al., 2004). Hubbard et al. showed that a
single amino acid, Glu230 located in a structured N-terminal
domain of SIRT1, is critical for activation of SIRT1 induced
by STACs through a common allosteric mechanism (Hub-
bard et al., 2013). SIRT6, activated by free fatty acids such
as oleic and linoleic acids, is a tumor suppressor that sup-
presses glycolysis (Feldman et al., 2013). The development
of small-molecule activators of SIRT6 may be able to target
specific tumors with low SIRT6 expression. Therefore, the
field of drug development regarding SIRTs may gradually
shift from inhibitors to activators, such as activating SIRT1 or
SIRT6 to target age-related degenerative diseases and
tumors with specific phenotypes, respectively.

In contrast to targeting writers and erasers by inhibiting
their catalytic domains, effective targeting of readers needs
to disrupt the protein-protein interaction. JQ-1 and I-BET are
the first two compounds that can inhibit bromodomain-con-
taining BET (bromodomain and extraterminal) proteins by
binding to the bromodomain of the BET proteins (Filip-
pakopoulos et al., 2010; Nicodeme et al., 2010; Zuber et al.,
2011). JQ-1 binds the first bromodomain of the BET protein
BRD4, which is a key tethering factor that interacts with
cyclin T1 and cdk9 to form a core positive transcription
elongation factor b (P-TEFb) (Jang et al., 2005). A more
exciting effect of BET inhibition is its ability to downregulate
previously undruggable MYC oncogene (Delmore et al.,
2011; Mertz et al., 2011; Sun and Gao, 2017). JQ-1 or I-BET
treatment leads to the transcriptional suppression of MYC
target genes, resulting in antitumor effects in MYC-driven
models of AML (Dawson et al., 2011; Zuber et al., 2011),
Burkitt’s lymphoma (Mertz et al., 2011) and multiple
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myeloma (Delmore et al., 2011). BET inhibition also pro-
motes immunotherapy by inhibiting the interaction of BRD2
and/or BRD4 with CDK9 and suppressing the expression of
inflammatory cytokines (Nicodeme et al., 2010; Bandukwala
et al., 2012).

ACLY, ACSS2 and PDC have been previously mentioned
as direct effectors of acetyl-coenzyme producers in the
nucleus for histone acetylation. Therefore, ACLY, ACSS2
and PDC inhibitors may now be considered new drugs for
targeting the metabolic-epigenomic axis in addition to their
current uses as metabolic regulators. As described above,
SB-204990 is a preclinical inhibitor that specifically targets
the ACLY enzyme (Pearce et al., 1998; Hatzivassiliou et al.,
2005). BMS-303141 (preclinical) (Li et al., 2007), ETC-1002
(phase II clinical trial) (Ballantyne et al., 2013; Filippov et al.,
2014; Gutierrez et al., 2014), and hydroxycitrate (phase IV
clinical trial) (Onakpoya et al., 2011; Madeo et al., 2014) are
other ACLY inhibitors in clinical trials. 1-(2,3-Di(thiophen-2-
yl)quinoxalin-6-yl)-3-(2-methoxyethyl)urea is the most potent
and specific inhibitor of ACSS2, which was first reported by
Comerford and his colleagues (Comerford et al., 2014).
Dichloroacetate (DCA), a classic PDK inhibitor, is considered
a PDC activator that inhibits PDK activity. The reactivation of
PDC by DCA therapy rectifies the balance between the
demand and supply of oxygen, leading to cancer cell death
(Michelakis et al., 2010; Dunbar et al., 2014; Chu et al.,
2015; Zhang et al., 2015). Please see Table S1 for more
details about the clinical trials of targeting acetylation for
cancer therapy, including the inhibitors not mentioned in this
review article due to space limitations.

Targeting the methylation of DNA and histones
for cancer therapy

As indicated above, the frequent hypermethylation of tumor
suppressor genes further promotes cancer development;
therefore, the demethylation of DNA by blockading DNMTs
constitutes an interesting treatment strategy due to its
reversibility. Nucleoside analogs and nonnucleoside inhibi-
tors are the two main types of DNMT inhibitors (DNMTi), and
nucleoside analogs have been known and studied for many
years. Azacitidine (also known as 5-azacytidine) and deci-
tabine (also known as 5-aza-2’-deoxycytidine) are the oldest
DNMTis and are nucleoside analogs that incorporate DNA
during the S-phase of the cell cycle to form an irreversible
complex with DNMTs, leading to the degradation of the
DNMTs. They have been approved by FDA as DNA-
demethylating drugs used to treat myelodysplastic syndrome
(MDS), chronic myelomonocytic leukemia, and a range of
other malignancies (Kaminskas et al., 2005a; Kaminskas
et al., 2005b) and represent two of the most successful and
long-standing inhibitors to target epigenetic processes.
Azacitidine and decitabine were first synthesized almost 60
years ago (Evans and Mengel, 1964; Sorm et al., 1964;
Christman, 2002). Azacitidine has been shown to have

extensive antimetabolic activity in cultured cancer cells and
is an effective chemotherapeutic agent in the treatment of
acute myelogenous leukemia. However, one limitation of
these drugs is that they have a short half-life of approxi-
mately 30 min, which limits their exposure to diseased cells,
which may thus impair their effectiveness (Marcucci et al.,
2005; Karahoca and Momparler, 2013), resulting in no major
responses observed in their treatment of solid tumors.
Zebularine, a novel nucleoside, is a cytidine analog that is
less toxic and can therefore be taken in high doses consis-
tently (Holleran et al., 2005). Guadecitabine (SGI-110), a
second-generation DNMT inhibitor, acts as a prodrug of
decitabine, conferring better stability and reduced toxicity in
tumor-infected nude mice compared to decitabine (Yoo et al.,
2007; Chuang et al., 2010), and it has been tested in phase II
clinical trials for the treatment of MDS and AML (Clini-
calTrials.gov Identifier: NCT01261312).

The identification of small nonnucleoside DNMT inhibitors
such as flavonoids (or bioflavonoids, such as epigallocate-
chin-3-gallate (EGCG)) (Galeotti et al., 2008; Yang et al.,
2009; Singh et al., 2011), hydralazine (Chuang et al., 2005;
Singh et al., 2009a), procainamide and procaine (Yoo and
Medina-Franco, 2011), curcumin (Liu et al., 2009; Shu et al.,
2011), RG108 (phthalimido-L-tryptophan) (Siedlecki et al.,
2003; Brueckner et al., 2005), SGI-1027 (Denny et al., 1979;
Datta et al., 2009), and MG98 (Goffin and Eisenhauer, 2002;
Amato, 2007), which bind directly to DNMT catalytic regions
without binding to DNA, has also attracted considerable
attention. However, in vitro studies have shown that non-
nucleoside compounds induce limited epigenetic changes in
living cells (Ren et al., 2011), and none of the afore men-
tioned nonnucleoside DNMT inhibitors has entered clinical
development; thus, there is still a long way to go before
novel, selective, nonnucleoside DNMT inhibitors will be
available for clinical research.

There are fewer effective inhibitors of HMTs and KDMs
than inhibitors of acetylation and DNA methylation. Over the
past few years, the number of histone methylation small-
molecule modulators has increased rapidly through signifi-
cantly increased efforts in academia and the pharmaceutical
industry (Liu et al., 2014; Liu et al., 2015; McGrath and
Trojer, 2015). Inhibitors of the histone methyltransferases
DOT1L (Yu et al., 2012; Daigle et al., 2013) and EZH2
(Knutson et al., 2012; McCabe et al., 2012) have exciting
potential for cancer treatment.

DOT1L (disruptor of telomeric silencing 1-like) was iden-
tified as a human homolog of Dot1, a gene found in the yeast
Saccharomyces cerevisiae (Singer et al., 1998). DOT1L
catalyzes histone H3 lysine 79 (H3K79) methylation by
transferring a methyl group from its substrate SAM to the
amino group of lysine residues. It is the only enzyme critical
for the monomethylation, dimethylation, and trimethylation of
the ε-amino group on H3K79 (Feng et al., 2002; Lacoste
et al., 2002). EPZ004777, the first SAM-competitive inhi-
bitor of DOT1L, was able to kill biphenotypic (mixed-lineage)
leukemia (MLL)-rearranged leukemia cells and prolong the
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survival time of mice with MLL-rearranged leukemia, but it
had little killing effect on non-MLL translocated cells (Daigle
et al., 2011; Chen et al., 2013a). By occupying the SAM-
binding pocket and inducing conformational changes in
DOT1L, EPZ-5676, a derivative of EPZ004777, is another
effective DOT1L inhibitor that led to tumor regression in rat
xenograft models of MLL-rearranged leukemia (Daigle et al.,
2013).

H3K27 methyltransferase EZH2 is the catalytic compo-
nent of PRC2, an established transcriptional repressor (Cao
et al., 2002; Levine et al., 2004). Several studies have shown
that EZH2 disorders are often associated with the progres-
sion, metastasis, and poor clinical outcomes of patients with
lymphoma and solid tumors, including prostate, breast, kid-
ney, and lung cancers (Varambally et al., 2002; Moss and
Wallrath, 2007; Yu et al., 2007; Varambally et al., 2008;
Wagener et al., 2010; Takawa et al., 2011; McCabe et al.,
2012; Volkel et al., 2015). GSK126 effectively inhibits wild-
type and mutant EZH2 methyltransferase activity by com-
peting with SAM. GSK126 can inhibit the proliferation of
EZH2-mutant diffuse large B-cell lymphoma (DLBCL) cells
and markedly inhibit the growth of EZH2-mutant DLBCL
xenografts in mice (McCabe et al., 2012). Subsequently,
other EZH2 inhibitors, including EPZ005687 (Knutson et al.,
2012), EPZ-6438 (tazemetostat) (Knutson et al., 2014), and
CPI-1205 (Taplin et al., 2018), have been developed and are
currently in phase I or II clinical trials.

IDH mutations indirectly inhibit extensive histone
demethylases and lead to histone hypermethylation
throughout the genome. Targeting IDH mutations for glioma
and AML appears to be a promising therapeutic approach.
The IDH1R132H inhibitor (AGI-5198) impairs the growth and
promotes the differentiation of glioma cells with the
IDH1R132H mutation by inducing the demethylation of histone
H3K9me3 and the expression of genes critical for gliogenic
differentiation (Rohle et al., 2013). AGI-6780, a potent and
selective inhibitor of the tumor-associated mutant
IDH2R140Q, binds IDH2 at the dimer interface. Treatment of
TF-1 human erythroleukemia cells and primary human AML
cells with AGI-6780 induces cellular differentiation (Wang
et al., 2013). AG-221, another selective inhibitor of the
mutant IDH2R140Q enzyme, suppresses 2HG production and
induces the differentiation of both human AML cells and
mouse model cells (Yen et al., 2017). These inhibitors pro-
vide potential applications as differentiation therapies for
cancer, at least for AML. In addition, the frequent deletion of
methylthioadenosine phosphorylase (MTAP) as a conse-
quence of 9p21 loss in cancer cells leads to the dysregula-
tion of methionine metabolism and makes tumor cells more
sensitive to protein arginine N-methyltransferase 5 (PRMT5)
inhibitors, creating a new therapeutic opportunity based on
methionine metabolism and epigenomic interactions (Kryu-
kov et al., 2016; Marjon et al., 2016; Mavrakis et al., 2016).

DNA methylation and histone acetylation are the earliest
epigenetic targets for drug development. As described
above, epigenetic drugs, including DNMT and HDAC

inhibitors, have been approved by FDA for clinical use with
hematologic malignancies and other cancers. In contrast,
there is still considerable room for further development of
targeted histone methylation in terms of mechanistic dis-
covery and drug intervention. Moreover, the success of FDA-
approved drugs for use with solid tumors has been limited
because of the specific tumor microenvironment of these
cancers, such as hypoxia and immune cells. Nevertheless,
to date, there are many epigenetic targets of proteins and
DNA that have not been properly assessed with inhibitors;
therefore, epigenetic therapies, along with other therapies,
may offer many opportunities for tumor therapy. For more
information about the usage of HDAC inhibitors, IDH1/2
inhibitors, SAM cycle inhibitors and other inhibitors or acti-
vators of epigenetic modulation in cancer, please see the
excellent reviews by Falkenberg et al., Eckschlager et al.,
Wong et al. and Cheng et al. (Falkenberg and Johnstone,
2014; Eckschlager et al., 2017; Wong et al., 2017; Cheng
et al., 2019). Please see Table S2 for more details about the
clinical trials of targeting methylation for cancer therapy,
including the inhibitors not mentioned in this review article
due to space limitations.

Dietary interventions that target epigenetically modified
proteins and metabolic molecules as cancer therapy

Calorie restriction and fasting have been shown to extend
lifespan and confer health-promoting effects. Recently, an
increasing number of studies have discovered that the dis-
ruption of the dietary components of methionine (Xu et al.,
2020), serine and glycine (Maddocks et al., 2017; Muthu-
samy et al., 2020), ketone bodies (Xia et al., 2017; Hopkins
et al., 2018), choline (Romano et al., 2017), arginine (Poillet-
Perez et al., 2018), glutamine (Ishak Gabra et al., 2020),
fructose (Goncalves et al., 2019; Zhao et al., 2020), or cys-
teine (Badgley et al., 2020) mediates the progression of
multiple types of cancer. Here, we review the latest progress
in dietary controls in cancer therapy at the epigenetic level
(Fig. 4).

Ketogenic diets are high-fat low-carbohydrate diets that
inhibit cancer progression, in contrast to high-fat, high-car-
bohydrate diets that induce obesity and promote cancer
progression (Branco et al., 2016). A ketogenic diet promotes
the β-oxidation of fatty acids and the generation of ketone
bodies, such as AcAc, β-OHB, and acetone, in the livers.
Ketogenic diets function as “insulin-suppressing diets” by
reducing circulating insulin and insulin-like growth factor-1
(IGF-1) levels, thereby limiting the aberrant activation of
oncogenes (Nencioni et al., 2018; Klement, 2019). Insulin
feedback induced by PI3K inhibitor treatment reactivates the
PI3K-mTOR signaling axis in tumors, which may significantly
negate the beneficial therapeutic effects of inhibitors. Feed-
ing ketogenic diets together with a PI3K inhibitor to decrease
hyperglycemia and lower insulin release resulted in the
improved survival of the mice bearing PI3K-driven tumors
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(Hopkins et al., 2018). However, ketogenic diets alone had
varying effects on different tumor models. For example,
accelerated disease progression was shown for AML mouse
models fed ketogenic diets alone (Hopkins et al., 2018), and
these diets also accelerated tumor growth in other rodent
tumor models (Liskiewicz et al., 2016; Xia et al., 2017).
Whether ketone body-derived acetyl-CoA and β-hydroxy-
butyrate and the subsequent acetylation and β-hydroxybu-
tyrylation are involved in the confusing effect of ketogenic
diets on different tumor growth remains unclear.

Although glutamine is the most abundant amino acid in
the culture medium and is essential for immune cell function
and tumor development (Gao et al., 2009; Altman et al.,
2016; Kelly and Pearce, 2020), Ishak Gabra et al. found that
glutamine supplementation in the diet suppresses mela-
noma tumor growth independent of BRAF status. Dietary
glutamine-derived α-KG levels in vivo led to the
hypomethylation of H3K4me3, thereby inhibiting epigeneti-
cally activated oncogenic pathways in melanoma (Ishak

Gabra et al., 2020). This study showed the potential of
dietary intervention with glutamine to block melanoma tumor
growth by epigenetic reprogramming. Choline is an essential
methyl donor in one-carbon metabolism for the methylation
of histones and DNA. Romano et al. found that choline-uti-
lizing bacteria compete with the host to consume choline,
affecting the plasma and hepatic levels of methyl donor
metabolites in the host. Mice with choline-consuming bac-
teria exhibit increased susceptibility to metabolic disease
upon depletion of methyl donor metabolites when fed a high-
fat diet (Romano et al., 2017). Excessive consumption of
fructose increases the incidence of obesity and nonalcoholic
fatty liver disease (Hannou et al., 2018; Jensen et al., 2018).
In vivo isotope tracing revealed that the gut microbiota de-
composes dietary fructose into acetate, providing acetyl-
CoA for lipogenesis and H3K27 acetylation within the
ACSS2 genomic locus. Depletion of the microbiota or hep-
atic ACSS2 suppresses acetyl-CoA generation and the
synthesis of fatty acids (Zhao et al., 2020).

Figure 4. Dietary-based approaches for cancer therapy. Genetic and environmental factors, including gene mutation, radiation,

smoking, and excessive drinking, can cause a variety of human diseases, such as glioma, liver cancer, lung cancer, pancreatic

cancer, kidney cancer, and colorectal cancer, which are associated with metabolic dysregulation and epigenetic remodeling. Dietary

intake regulates nutrient availability, metabolite generation, and epigenetic modifications. Dietary changes in the composition of

ketones (low carb, high fat diet, such as yogurt, eggs), glutamine (dietary fish, soybean), choline (dietary eggs, meat, fish), methionine

(methionine restriction: dietary less proteins, it is only tested on animals), or serine (serine restriction: serine- and glycine-free diet, it is

only tested on animals), may extend lifespan and have health-promoting effects by reshaping the homeostasis of metabolism and

epigenetics such as methylation, acetylation, succinylation, and β-hydroxybutyrylation.
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Dietary restriction of methionine as a therapeutic
approach was proposed over 60 years ago (Sugimura et al.,
1959). A methionine-limited diet suppresses tumor invasion
and metastasis (Breillout et al., 1987; Guo et al., 1996; Jeon
et al., 2016). The combination of a methionine-limited diet
and one-carbon metabolism inhibitors, such as 5-fluorouracil
(5-FU), has a synergistic effect on tumor inhibition (Hoshiya
et al., 1997; Xiao et al., 2001). Methionine supplementation
in tumors restores T-cell function in B16F10 tumor-bearing
mice and retards tumor growth (Bian et al., 2020). However,
notably, methionine restriction together with choline deple-
tion promotes hepatic injury in some rodent models (Ca-
ballero et al., 2010). Dietary restriction of serine and glycine
decelerates tumor growth and increases mouse survival
(Maddocks et al., 2013; Gravel et al., 2014; Maddocks et al.,
2017; Muthusamy et al., 2020). However, it is not clear
whether the antitumor effect of serine and glycine starvation
depends on the alteration of methylation status. Please see
Table S3 for more details about the clinical trials of targeting
metabolic enzymes for cancer therapy, including the inhibi-
tors not mentioned in this review article due to space limi-
tations. Moreover, Table S4 summarizes the information of
the clinical trials in combination with epigenetic drugs and
metabolism-targeting drugs for cancer therapy in recent
years.

CONCLUSIONS AND FUTURE PERSPECTIVES

Substantial progress has been made in the understanding
and research on the intersection of tumor metabolism and
epigenetics in recent decades. However, there are still many
important scientific questions to be answered. For example,
what are the specific action and mechanism of nonacetyl
histone acylation modulations, including propionylation,
butyrylation, crotonylation, malonylation, 2-hydroxyisobu-
tyrylation and glutarylation, in the development of different
cancers (Sabari et al., 2017; Zhao et al., 2018). When mul-
tiple modification pathways target the same amino acid
residues, there may be competitive antagonism between
different modifications. This is especially true for the ε group
of lysine, which can be acetylated, methylated, or ubiquiti-
nated (Bannister and Kouzarides, 2011; Sadakierska-Chudy
and Filip, 2015; Zheng et al., 2020), such as the balance
between H3K9 acetylation and methylation (Nicolas et al.,
2003), dynamic competition of H4 K5K8 acetylation and
butyrylation (Goudarzi et al., 2016), and the overlap of suc-
cinylation sites and acetylation sites in diverse organisms
including bacteria, yeast, and human cells (Weinert et al.,
2013). Itaconate, produced mainly by stimulated macro-
phages, can modify protein alkylation and protein itaconation
(Lampropoulou et al., 2016; Bambouskova et al., 2018; Mills
et al., 2018; Qin et al., 2019; Qin et al., 2020), but it is unclear
whether it directly modifies histones or indirectly modify
histones through succinate to regulate gene expression and
cancer progression. Another largely unanswered question is,

are certain regions of chromatin more susceptible to meta-
bolic rewiring than other regions.

Localized metabolites, especially in the nucleus and
mitochondria, reveal the importance of enzyme translocation
in the regulation of epigenetics. Thus, discovering the roles
of metabolites in other organelles, such as lysosomes, the
endoplasmic reticulum, Golgi apparatus, and storage gran-
ules, will be crucial to understanding how metabolism and
epigenetics interact with each other. Of particular impor-
tance, α-KGDH localized in the nucleus serves as a suc-
cinyltransferase to succinylate histones (Wang et al., 2017b;
Xu et al., 2021), and CPT1A can also serve as a lysine
succinyltransferase upon the succinylation of S100A10
(Kurmi et al., 2018; Wang et al., 2019a). Other aforemen-
tioned nuclear localized metabolism enzymes, such as
PKM2, ACLY, and PDC, not only provide the corresponding
substrates or metabolites for chromatin modulation but also
interact with other proteins to form complexes. Detailed
analyses of the interacting partners and elucidation of their
nonmetabolic or moonlighting roles are underappreciated
opportunities but important for us to understand and battle
cancers.

Many clinical trials are testing epigenetic molecular inhi-
bitors, such as HDAC inhibitors and DNMT inhibitors. The
IDH1-mutant inhibitor ivosidenib and IDH2-mutant inhibitor
enasidenib are granted by FDA for the treatment of AML with
IDH1 or IDH2 mutations, respectively (Table S3). Dietary
therapy is another promising antitumor approach that seems
to be more convenient and economical and, despite desir-
able outcomes in animal studies, requires significant
research before reaching the clinical stage.

The metabolic rewiring of tumor and immune cells regu-
lates tumor progression by shaping the epigenome in the
tumor microenvironment. While several typical PTMs mod-
ulated by metabolic enzymes and metabolites are reviewed
here, the metabolome-epigenome crosstalk paradigm is
continuously expanding, and the elucidation of the molecular
basis of these PTMs will provide us with exciting opportu-
nities to efficiently combat cancer.
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ABBREVIATIONS

AcAc, acetoacetate; ACACA, acetyl-CoA carboxylase 1; Ac-CoA,

acetyl-CoA or acetyl coenzyme A; ACLY, ATP citrate lyase; ACOD1/
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CAD, aconitate decarboxylase 1; ACOX1, acyl-CoA oxidase 1;

ACSSs, acyl-CoA synthetase short-chain family members; ADD,

ATRX-DNMT3-DNMT3L; ADM, acinar-to-ductal metaplasia; α-KG,

α-ketoglutarate; α-KGDH, α-ketoglutarate dehydrogenase complex;

AKT, AKT serine/threonine kinase; AML, acute myeloid leukemia;

AMPK, AMP-activated protein kinase; ATM, ataxia telangiectasia

mutated; BAH, bromo adjacent homology; BAZ2A/B, bromodomain

adjacent to zinc finger domain 2A/B; BCAAs, branched amino acids;

BCAT2, branched-chain amino acid transaminase 2; Bcl-xL, B-cell

lymphoma-2-like 1; BMDM, bone marrow-derived macrophage;

CBP, CREB-binding protein; CD, chromodomain; ChIP-qPCR,

chromatin immunoprecipitation (ChIP) coupled with quantitative

PCR; COX-2, cyclooxygenase 2; CPT1A, carnitine palmitoyltrans-

ferase 1A; CRTC2, CREB-regulated transcription coactivator 2; CS,

citrate synthase; CTCL, cutaneous T-cell lymphoma; CYP1A1, cy-

tochrome P450 1A1; DCA, dichloroacetate; DCD, double chromod-

omain; D2HGDH, D-2-hydroxyglutarate dehydrogenase; DIPGs,

diffuse intrinsic pontine gliomas; DLAT, dihydrolipoamide S-acetyl-

transferase; DLBCL, diffuse large B-cell lymphoma; DLD, dihy-

drolipoamide dehydrogenase; DNMTs, DNA methyltransferases;

DOT1L, disruptor of telomeric silencing 1-like; DPF, double PHD

finger; DSS, dextran sodium sulfate; EMT, epithelial-to-mesenchy-

mal-transition; ESCs, embryonic stem cells; EZH2, enhancer of

zeste homolog 2; FAD, flavin adenine dinucleotide; FASN, fatty acid

synthase; FDA, US Food and Drug Administration; FH, fumarate

hydratase; FIH, factor inhibiting HIF; FL, follicular lymphoma;

FOXO1, forkhead box O1; FOXO3a, forkhead box O3A; Fum,

fumarate; GAPDH, glyceraldehyde-3-phosphate dehydrogenase;

GBM, glioblastomas; GC/MS, gas chromatography mass spectrom-

etry; GCN5, general control of amino acid synthesis 5-like 2 (Yeast);

GDH, glutamate dehydrogenase; GLDC, glycine dehydrogenase;

GLS, glutaminase; GNAT, G protein subunit alpha transducin;

GNMT, Glycine N-methyltransferase; GSH, glutathione; HAT-like

domain, histone acetyltransferase-like domain; HATs, histone acety-

latransferases; HBP, hexosamine biosynthetic pathway; H2BpS36,

phosphorylation of histone H2B at serine 36; HDACs, histone

deacetylases; HDMs, histone demethylases; HDR, DNA homology-

dependent repair; 2-HG, 2-hydroxyglutarate; HIF-1α, hypoxia-in-

ducible factor 1α; HIFs, hypoxia-inducible factors; H3K4, histone H3

lysine 4; H3.3K27M, histone H3.3 lysine 27-to-methionine; H3K79,

histone H3 lysine 79; HLRCC, hereditary leiomyomatosis and renal

cell cancer; 5’-hmC, DNA 5’-hydroxymethylcytosine; HMGCS2,

3-hydroxy-3-methylglutaryl-CoA synthase 2; HMTs, histone methy-

transferases; HO-1, heme oxygenase-1; H3pS10, phosphorylation

of histone H3 at serine 10; HR, homologous recombination; hTERT,

human telomerase reverse transcriptase; IDH, isocitrate dehydro-

genase; IFN-γ, interferon-γ; IGF-1, insulin-like growth factor-1; IHC,

immunohistochemistry; IKK-α, IκB kinase-α; IL-1β, interleukin-1β; IL-

4, interleukin-4; iMEF, immortalized mouse embryonic fibroblasts;

IRF1, interferon regulatory factor 1; IRG1, immune-responsive gene

1; ITalk, itaconate-alkyne; JHDM/Jmj-KDM, Jumonji C (JmjC)

domain-containing demethyalses; Kacetyl, lysine acetylation; KAT2A,

lysine acetyl transferase 2A; KATs, lysine acetylatransferases; Kbhb,

lysine β-hydroxybutyrylation; Kla, lysine lactylation; KRAS, Kirsten

rat sarcoma 2 viral oncogene homolog; Ksucc, lysine succinylation;

LCAD, long-chain acyl-CoA dehydrogenase; LC-MS, liquid chro-

matography-mass spectrometry; LDHA: Lactate dehydrogenase A;

L2HGDH, L-2-hydroxyglutarate dehydrogenase; LKB1, liver kinase

B1; LPS, lipopolysaccharide; LSD1, lysine-specific histone demethy-

lase 1; MAL, MyD88-adaptor-like protein; MATIα, methionine

adenosyltransferase Iα; MATIIα, methionine adenosyltransferase

IIα; MBPs, methyl-binding proteins; MBT, malignant brain tumor;

5mC, 5-methylcytosine; MCM, methylmalonyl-CoA mutase; MDH,

malate dehydrogenase; MDS, myelodysplastic syndrome; MeCP2,

methyl-CpG-binding protein 2; mESCs, mouse embryonic stem

cells; MET, methionine; me-THF, 5,10-methylene-THF; MLL, mixed-

lineage leukemia; MPC, mitochondrial pyruvate carrier; MPO,

myeloperoxidase; MSK1 and MSK2, mitogen- and stress-activated

protein kinase 1 and 2; MTAP, methylthioadenosine phosphory-

lase; MTB, Mycobacterium tuberculosis; mTHF, 5-methyltetrahydro-

folate; mTOR, mechanistic target of rapamycin kinase; MyD88,

myeloid differentiation primary-response protein 88; MYST, Moz,

Ybf2/Sas3, Sas2, and Tip60; NAD+, nicotinamide adenine dinu-

cleotide; NADPH, nicotinamide adenine dinucleotide phosphate,

reduced form; NAM, nicotinamide; NAMPT, NAM phosphoribosyl-

transferase; Ndufs4, NADH dehydrogenase [ubiquinone] iron-sulfur

protein 4; NE, neutrophil elastase; NETs, neutrophil extracellular

traps; NFATC1, nuclear factor of activated T cells cytoplasmic 1; NF-

κB, nuclear factor-κB; NLS, nuclear localization signal; NMN,

nicotinamide mononucleotide; NOK, novel oncogene with kinase-

domain; OAA, oxaloacetate; 2-OG. 2-oxoglutarate; OGA, O-GlcNA-

case; O-GlcNAcylation, O-linked β-N-acetylglucosamine glycosyla-

tion; OGT, O-GlcNAc transferase; β-OHB, β-hydroxybutyrate;

OKL38, oxidative stress-induced growth inhibitor 1; oxPPP, oxidative

pentose phosphate pathway; PAD or PADI, peptidyl-arginine deim-

inase; PARP, poly (ADP-ribose) polymerase; PCAF, p300/CBP-

associated factor; p300/CBP, E1A-binding protein p300/CREB-

binding protein; PCK1, phosphoenolpyruvate carboxykinase 1;

PDAC, pancreatic ductal adenocarcinoma; PDC, pyruvate dehydro-

genase complex; PDH, pyruvate dehydrogenase; PDHX, pyruvate

dehydrogenase complex, component X; PDK, pyruvate dehydroge-

nase kinase; PDP, pyruvate dehydrogenase phosphatase; PEP,

phosphoenolpyruvate; PEPCK, phosphoenolpyruvate carboxyki-

nase; 3-PG, 3-phosphoglycerate; PGC1α, PPARG coactivator 1α;

6PGD, 6-phosphogluconate dehydrogenase; PHD2, prolyl hydrox-

ylase domain-containing proteins, also known as Egl nine homo-

logs (EGLN2); PI3K, phosphoinositide 3-kinase; PIP2,

phosphatidylinositol-(4,5)-bisphosphate; PIP3, phosphatidylinositol-

(3,4,5)-trisphosphate; PKM2, pyruvate kinase isozyme M2; PLK1,

polo-like kinase 1; Pol II, RNA polymerase II; PPAR, peroxisome

proliferator-activated receptor; pResMϕ, peritoneal tissue–resident

macrophages; PRMT5, protein arginine N-methyltransferase 5;

PSAT1, phosphoserine aminotransferase 1; PTCL, peripheral T-cell

lymphoma; P-TEFb, positive transcription elongation factor b; PTEN,

phosphatase and tensin homolog; PTMs, posttranslational modifi-

cations; PTPRM, protein tyrosine phosphatase receptor type M;

RCC, renal cell carcinoma; RSK2, ribosomal S6 kinase 2; SAH,

S-adenosylhomocysteine; SAHA, suberanilohydroxamic acid;

SAHH, S-adenosyl homocysteinehydrolase; SAM, S-adenosyl

methionine; SASH1, SAM and SH3 domain-containing protein 1;

SDH, succinate dehydrogenase; SDHA, succinate dehydrogenase

complex, subunit A; SDH PGL/PCC, succinate dehydrogenase-

related hereditary paraganglioma and pheochromocytoma;

SESAME, Serine-responsive SAM-containing metabolic enzyme

complex; SETD2, SET domain-containing 2; SETDB1/2, SET

domain bifurcated 1/2; SFK, Src-family kinase; SHMTs, serine
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hydroxymethyltransferases; SKP2, S-phase kinase-associated pro-

tein 2; SREBF, sterol regulatory element-binding transcription factor;

SQLE, squalene epoxidase; STAC, sirtuin-activating compound;

TAD domain, transcription activation domain; TAMs, tumor-associ-

ated macrophages; TDH, threonine dehydrogenase; Teff cell, effector

T cell; TETs, Ten-eleven translocation enzymes; TFEB, transcription

factor EB; THF, tetrahydrofolate; TIP60, tat-interacting protein, also

known as histone acetyltransferase KAT5; TIRAP, TIR domain-

containing adaptor protein; TLR4, Toll-like receptor 4; Tmem cell,

memory T cell; Tn cell, Naïve T cell; TRAM, TRIF-related adaptor

molecule; TRIF, TIR-domain-containing adaptor protein-inducing

IFNB; TSA, trichostatin A; TTD, tandem Tudor domain; UCP1,

Mitochondrial uncoupling protein 1; UDP, uridine diphosphate

glucose; UDP-GlcNAc, uridine diphosphate GlcNAc; VDAC3, volt-

age-dependent anion channel 3; VHL, von Hippel-Lindau tumor

suppressor; VTE, venous thromboembolism; zn-CW, zinc finger CW.
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