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Lay summary

Long-chain omega-3 fatty acids can potentially target multiple pathways regulating hepatic
inflammation and fibrosis. However, their susceptibility to peroxidation and use as an energy
source may limit their clinical efficacy. Here we show that a structurally modified omega-3 fatty
acid, icosabutate, is minimally incorporated into hepatocytes and resists utilisation as an energy
source. This results in a high extracellular concentration and allows icosabutate to avoid the
worsening of hepatic oxidative stress seen in response to an unmodified omega-3 fatty acid. The
structural changes also markedly improve anti-inflammatory and anti-fibrotic efficacy in a
mouse model of non-alcoholic steatohepatitis (NASH). A hepatoprotective effect of icosabutate
in patients with elevated circulating lipids at increased risk of NASH is also shown, where rapid

reductions in markers of liver injury are observed.



Abstract

Background and Aims: Although long-chain omega-3 fatty acids (LCn-3FAs) regulate
inflammatory pathways of relevance to non-alcoholic steatohepatitis (NASH), their susceptibility
to peroxidation may limit their therapeutic potential. We compared the metabolism of
eicosapentaenoic acid (EPA) with an engineered EPA derivative (icosabutate) in human
hepatocytes in vitro and their effects on hepatic glutathione metabolism, oxidised lipids,
inflammation, and fibrosis in a dietary mouse model of NASH, and in patients prone to fatty liver

disease.

Methods: Oxidation rates and cellular partitioning of EPA and icosabutate were compared in
primary human hepatocytes. Comparative effects of delayed treatment with either low- (56
mg/kg) or high-dose (112 mg/kg) icosabutate were compared with EPA (91 mg/kg) or a
glucagon-like peptide 1 receptor agonist in a choline deficient (CD), L-amino acid defined NASH
mouse model. To assess potential clinical translation, effects on elevated liver enzymes and FIB-

4 were assessed in overweight, hyperlipidemic subjects with an increased risk of NASH.

Results: In contrast to EPA, icosabutate resisted oxidation and incorporation into hepatocytes.
Icosabutate also reduced inflammation and fibrosis in conjunction with a reversal of CD-diet
induced changes in the hepatic lipidome. EPA had minimal effect on any parameter and even
worsened fibrosis in association with depletion of hepatic glutathione. In dyslipidemic subjects
at risk of NASH, icosabutate rapidly normalised elevated plasma ALT, GGT and AST and reduced
FIB-4 in subjects with elevated ALT and/or AST.

Conclusion: Icosabutate avoids hepatocyte accumulation and confers beneficial effects on
hepatic oxidative stress, inflammation and fibrosis in mice. In conjunction with reductions in
markers of liver injury in hyperlipidemic subjects, the findings suggest that structural

engineering of LCn-3FAs offers a novel approach to the treatment of NASH.



Introduction

The pathogenesis of non-alcoholic steatohepatitis (NASH) is complex, with multiple pathways
driving inflammation, hepatocyte damage and fibrosis (1-3). The ability of long-chain omega-3
fatty acids (LCn-3FAs), e.g., eicosapentaenoic acid (EPA), to inhibit platelet activation (4), target
nuclear (5) and extracellular (6) receptors and favourably alter the balance of NASH-associated
oxylipins (oxygenated fatty-acid metabolites) (7, 8), fulfils the need for pleiotropic targeting of
the disease. However, 12 months treatment with EPA ethyl ester (1.8 or 2.7 g/day) had no effect

on liver histology in patients with NASH (9).

Given the importance of oxidative stress as a driver of NASH (10), a potential liability countering
the beneficial effects of LCn-3FAs for the treatment of NASH is their susceptibility to
peroxidation due to the high number of allylic double bonds (11). Increased oxidative stress in
response to high-dose LCn-3FAs occurs in humans (12-14) and in rodent models of both NASH
and alcoholic steatohepatitis (ASH) (15, 16).

Avoidance of incorporation into complex lipids, in particular cell membranes (17), could limit the
LCn-3FA associated increase in oxidative stress. lcosabutate is a structurally engineered EPA
derivative currently being evaluated in a phase 2b clinical study for the treatment of NASH
(NCT04052516). In contrast to naturally occurring LCFAs that are transported in chylomicrons
from the gut to the periphery (18), icosabutate directly targets the liver via the portal vein and

has demonstrated promising results in rodent NASH models (19, 20).

We have compared the cellular metabolism of icosabutate versus unmodified EPA in primary
human hepatocytes in vitro. We also compared their effects upon hepatic lipidomics,
glutathione metabolism, inflammation, fibrosis, and glucose tolerance in an optimized dietary,
non-transgenic, fibrosing choline-deficient L-amino acid defined (CD) moderate fat diet mouse
model (21, 22) using the GLP-1R agonist, exenatide extended-release (EXE) as a positive control.
To further assess the potential translatability of the rodent findings to humans, we assessed
time-course changes in elevated plasma alanine aminotransferase (ALT), aspartate
transaminase (AST) and gamma-glutamyltransferase (GGT) levels in subjects with increased risk

of NASH and cardiovascular disease (CVD) treated for up to 12 weeks with oral icosabutate (600



mg q.d.) or placebo (23-25). Fibrosis-4 (FIB-4) scores were also measured in subjects with

elevated baseline ALT and/or AST.



Methods
For detailed methods refer to the Supplement
Cell experiments

Primary human hepatocytes grown in 12- or 96-well plates were incubated with 5 uM or 25 uM
(0.2 and 0.5 uCi/ml, respectively) *C-lcosabutate or *C-EPA for 24 h. To assess lipid
distribution, cells were washed with PBS, harvested in 250 ul 0.1% SDS and cellular lipids
extracted and separated as described earlier (26), followed by liquid scintillation counting.
Cellular and extracellular lipids were calculated in relation to total cell protein content
measured according to Pierce BCA Protein Assay Kit. To measure fatty acid oxidation, cells were
incubated for 24 h before CO, was trapped for another 4 h. The CO; produced was captured by
filters soaked with sodium hydroxide (27). Cellular *C-CO; production by was related to total

cell protein content measured according to Bradford (28).
Choline-deficient (CD) diet NASH mouse model

Ninety male C56BL/6J mice (9 weeks old) were divided into 2 experimental groups (45 mice per
group) and fed either a choline-sufficient (CS, n = 45) or choline-deficient (CD, n = 45) L-amino
acid defined high sucrose, moderate fat (containing 31 % of calories from fat) diet, plus 0.2%
cholesterol for 12 weeks (Table S1). From week 7-12 groups of 9 received either no treatment
(CD, CS), 0.15mmol/kg icosabutate (ICOSA-L), 0.3 mmol/kg icosabutate (ICOSA-H), 0.3 mmol/kg
EPA in chow, or exenatide extended-release (EXE) at 0.4 mg/kg once-weekly injected
subcutaneously (EXE dosage utilised in earlier studies (29)). Animals were sacrificed after 12

weeks.

Intraperitoneal glucose tolerance test (IPGTT) was performed at study end as described
previously (30). Liver hydroxyproline was quantified from 150 mg of frozen liver (31), to

determine liver collagen content.
Staining of liver sections

Liver cryosections were stained for lipid with Direct Red 80, Sudan lll, or Qil red O; collagen and
CD68 were stained on formalin fixed sections (22, 30, 32). In each animal, stained areas were

7



guantitated using Imagel) software, and cells were counted in a minimum of 10 randomly

selected fields (30, 32, 33).
RT-qPCR analysis

TagMan probes and primers are summarized in Table $S2. RNA levels were normalised to Gapdh

using the relative standard curve method (22, 30-33).
Hepatic lipidomic analysis was performed with LC-MS/MS as described (19).
Human study samples

Subjects with abnormal baseline ALT, GGT or AST were identified from 3 previously published
placebo controlled, randomized clinical trials (NCT02364635, NCT01893515 and NCT01972178)
of icosabutate treatment (600 mg g.d.) versus placebo in overweight/obese hyperlipidemic
subjects at high risk of NASH and cardiovascular disease (23-25). Liver enzymes were assessed
over 5 time points from baseline to study end (4 and 12 weeks). FIB-4 scores were calculated
[age (years) x AST (U/L)/[platelets (10°/L) x ALT¥2 (U/L)] in subjects with elevated baseline ALT
and/or AST (34).

Further detailed information for experiments performed in vivo and in vitro are detailed in

Supplemental Methods.

Statistical Analysis Data from the mouse model and human subjects were evaluated using one-
way ANOVA (two-way ANOVA for IPGTT) with multiple comparison post-hoc analysis except for
FIB-4 scores where Wilcoxon paired signed rank test was used. For cellular lipids and hepatic
lipidomics, differences between groups were tested using an unpaired t-test. Data are
presented as mean values + SEM (standard error of mean) with significance set at a = 5% for all
comparisons. All statistical data was produced using GraphPad Prism 8.2.1 (GraphPad software,
La Jolla, USA) except hepatic lipidomics (MassLynx 4.1 software) in which all calculations were
performed using statistical software package R v.3.1.1 (R Development Core Team, 2011;

https://cran.r-project.org/).


http://www.sciencedirect.com/science/article/pii/S0168827805004885#tbl1
https://cran.r-project.org/

Results

Icosabutate is minimally incorporated into complex lipids and is resistant to use as a cellular

energy source

Icosabutate is structurally designed to (A) avoid incorporation into complex lipids via an ethyl-
group in the a-position and (B) resist B-oxidation via incorporation of an oxygen atom into the
[-position (Fig.1A). As is shown in Table 1, in contrast to EPA, minimal amounts of
icosabutate/icosabutate metabolites are found as complex lipids after 24 h incubation of
primary human hepatocytes (15 to 19-fold lower concentrations in total intracellular lipids than
EPA). Accordingly, higher concentrations of icosabutate were found in the extracellular fraction
(9- and 14-fold higher than the intracellular pool at 5 and 25 uM, respectively) (Fig.1B).
Conversely, EPA concentration was 6.5- and 4-fold higher in the intracellular versus the
extracellular pool at the corresponding concentrations. Minimal increases in CO; production
from primary human hepatocytes incubated with icosabutate demonstrate the efficacy of the
oxygen substitution in the B-position (Fig.1C), effectively preventing its own metabolism via
fatty acid B-oxidation. Overall, these results demonstrate how specific structural modifications
to EPA minimise both fatty acid B-oxidation and esterification into complex lipids in human

hepatocytes, resulting in a high extracellular concentration.

A GLP-1R agonist (EXE) induces pronounced effects on body weight, food intake, liver weight,

plasma ALT and glycemic control in mice with diet-induced NASH

As expected, and in part due to its anorexigenic effect (35), EXE significantly improved multiple
parameters related to obesity and NASH. Thus, EXE reduced body weight by 22% (Fig.2A) in
association with a decreased calculated food intake (-29%) versus the untreated CD-diet-fed
mice (Fig.2B), while neither icosabutate nor EPA affected body weight or calculated food intake.
The CD-diet (which attenuates hepatic export of TAG via inhibition of phosphatidylcholine
synthesis) induced an increase in liver weight relative to the choline-sufficient (CS) control diet
(Fig.2C). In mice fed the CD-diet, EXE markedly reduced liver weight as compared to the CD-diet
alone, whereas icosabutate and EPA had no effect (Fig.2C). The CD-diet induced an increase in

plasma ALT (Fig.2D) that was reduced by treatment with ICOSA-H and EXE treatment, whereas



no changes were observed in plasma AST (Fig.2E). EXE markedly improved glucose tolerance, as
measured by the intraperitoneal glucose tolerance test (Fig.2F) in CS-diet-fed mice. ICOSA-L and
ICOSA-H modestly improved glucose tolerance, whereas EPA was without effect. CS-diet-fed

mice displayed a more pronounced glucose excursion versus CD-diet-fed mice (Fig.S2).

Late onset treatment with icosabutate and EXE, but not EPA, decreases hepatic fibrosis and

inflammation

Representative images from all treatment groups are shown in Fig.3A. The CD-diet markedly
increased hepatic fibrosis, as evidenced by a 2.2-, 3.5 and 2.8-fold increase in collagen
deposition measured via relative (mg per g liver) and total (per liver) hydroxyproline (HYP)
content, and Sirius Red (SR) morphometry, respectively (Fig.3B-D). Icosabutate was the only
treatment that significantly reduced all three quantitative measures of fibrosis. Notably, despite
6 weeks of the CD-diet before treatment initiation, ICOSA-L reduced fibrosis (SR) by 69% versus
no treatment to a level comparable with the control CS mice that developed no detectable
fibrosis (Fig.3D). ICOSA-H and EXE also significantly decreased fibrosis (SR) versus untreated CD
mice by 37% and 41%, respectively. EXE reduced total (Fig.3B), but not relative HYP content in
association with the markedly reduced liver weight in EXE-fed mice. EPA had no significant

effect on HYP content and significantly increased collagen proportionate area (Fig.3D).

Effects of delayed treatment with icosabutate upon hepatic macrophage content and

expression of hepatic inflammation and fibrosis related genes

Representative images of CD68 and YM1+ stained livers from CD treatment groups are shown in
Fig.4A. Icosabutate or EXE did not affect total macrophage numbers (CD68+) (Fig.4B).
Icosabutate, but not EXE, induced a dose-dependent decrease in YM1+ M2-type macrophages
(Fig.4C). The CD-diet upregulated all measured hepatic inflammation and fibrosis related genes
versus the CS-diet (Fig.5A-l). Icosabutate at both doses significantly attenuated the CD-diet
induced increases in all genes except for acta2 (aSMA) (Fig. 5E) and tgfb1 (Fig.5F) at the low-
dose. EXE also showed significant inhibitory effects but did not alter transcripts encoding
PDGFRp, PDGF-B and TGFf31 (Fig.5B,C,F). EPA only reduced timp1, acta2 and IL-1J (Fig.5D,E,H)

expression.
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EPA exacerbates the CD-diet induced decrease in hepatic glutathione

Glutathione plays a pivotal role in cellular protection from lipid peroxidation (36). Given the
pronounced cellular accumulation of EPA versus icosabutate in hepatocytes and the
susceptibility of EPA to peroxidation, we compared their effects on hepatic reduced (GSH) and
oxidised (GSSG) glutathione as markers of cellular redox status. The CD-diet induced a 38%
decrease in hepatic GSH compared to the CS-diet, which was further exacerbated by EPA-
treatment (37% lower than CD-diet mice) (Fig.6A). GSSG levels were maintained in response to
the CD-diet but were significantly reduced by ICOSA-H (Fig.6B). Secondary to the decrease in
GSH, the CD-diet significantly decreased the GSH/GSSG ratio, an effect that was offset by
treatment with ICOSA-H (Fig.6C). In contrast, EPA worsened the GSH/GSSG ratio in the CD-diet
mice, driven by the decrease in GSH. Peroxidation of EPA prior to ingestion could be ruled out,
since the GSH/GSSG ratio in the CS-diet fed groups was unchanged by EPA treatment (Fig.6D).
Overall, these data suggest that the CD-diet associated depletion of hepatic GSH is exacerbated

by EPA, whereas ICOSA-H improves cellular redox status.

Since EPA mediates its anti-inflammatory effects in part via replacement of arachidonic acid
(AA) in cell membranes, we also measured hepatic stores of AA in phospholipids (PL;
phosphatidylcholine species) and diacylglycerols (DAG). The CD-diet induced a significant 51%
increase in hepatic DAG-AA (Fig.6E) and a 28% decrease in PL-AA (Fig.6F). Both doses of
icosabutate and, to a lesser extent EPA, attenuated the CD-diet induced increase in DAG-AA,
whereas concentrations of PL-AA were lower in icosabutate treated mice only (Fig.6E,F). To
assess if the conversion of linoleic acid (LA) and AA to oxylipins was inhibited by either
treatment, we also assessed the hepatic 13-hydroxyoctadecadienoic acid (HODE)/LA and (11-,
12- and 15-)hydroxyeicosatetraenoic acid (HETE)/AA ratios. Although there was no significant
change in the CS- versus CD-diet groups, icosabutate (both doses) significantly reduced the 13-
HODE/LA ratio (a ratio that in plasma is positively associated with NASH in humans (37)) (Fig.6H)
and the HETE/AA ratio (ICOSA-H only). Despite lack of incorporation into phospholipid
membranes, only icosabutate reduced hepatic concentrations of AA-derived (11(R)- and 15(S)-

HETE) and LA-derived (13-HODE and 9,12,13-TriHOME) oxylipins (Fig.6l-L).
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Overall, these data suggest that icosabutate reduces hepatic AA stores, the conversion of LA and

AA to oxylipins and the concentrations of both AA and LA derived oxylipins.
Icosabutate prevents the CD-diet induced changes in hepatic lipids

As shown in Fig.7, the most significant changes in hepatic lipids induced by the CD-diet were
increases in DAG, TAG, TriHOMEs (trihydroxy-octadecenoic acids) and cholesteryl esters (ChoE),
all of which were significantly lowered by treatment with icosabutate versus CD-diet alone
(except ChoE by low-dose icosabutate). The CD-diet also significantly increased omega-6 fatty
acids, total poly- and monounsaturated fatty acids (PUFA/MUFAs) and glycine conjugated bile
acids (GCBA). Apart from GCBA, icosabutate significantly prevented these increases. EPA had
relatively minor effects on hepatic lipids but did prevent the CD-diet-induced increase in GCBA.
The CD-diet significantly lowered oxoODEs (oxo-octadecadienoic acids), whereas this decrease
was prevented by icosabutate. As expected from the changes in individual HETEs noted above,
icosabutate, but not EPA, decreased the concentrations of NASH associated HETEs (8). Overall,
except for GCBA, the hepatic lipidomic data suggest that icosabutate prevents CD-diet induced

changes in hepatic lipids.
Icosabutate is a full FFAR4 (B-arrestin-2 pathway) agonist

As we found that icosabutate is predominantly found in the extracellular pool, we measured its
activity towards free fatty acid receptor 4 (FFAR4). FFAR4 is a membrane bound receptor highly
expressed on Kupffer cells/macrophages and activation via LCn-3FAs induces potent anti-
inflammatory effects in rodents (6). Icosabutate fully activated FFAR4 via the [3-arrestin-2
pathway at a concentration of 33 uM, with an EC50 of 15.5 uM (Fig. S1). Interestingly this EC50
value is approximately 3-fold lower than the portal vein Cnax of icosabutate in rats at a

therapeutic dose (19).

Icosabutate rapidly decreases markers of liver injury in dyslipidemic subjects at high-risk of

NASH/CVD.

To assess the potential translatability of the rodent findings to humans, we performed a post-
hoc analysis of changes in elevated markers of liver inflammation (ALT, AST), glutathione

metabolism (GGT) and fibrosis (FIB-4 score) (34) in subjects at high risk of NASH and CVD
12



(hyperlipidemic, overweight/obese) treated for up to 12 weeks with icosabutate (600 mg g.d.)
or placebo (23-25). Subjects with abnormal baseline ALT (>40 U/L), GGT (>38 U/L females, >51
U/L males) or AST (>34 U/L) from 3 clinical trials with icosabutate were identified. The numbers
of subjects identified with elevated baseline levels for icosabutate and placebo groups,

respectively, were 16 and 19 (ALT), 33 and 35 (GGT), 11 and 13 (AST).

The baseline characteristics of the overall study population are shown in Fig.8A. Icosabutate
treatment rapidly reduced plasma ALT, with significant reductions versus baseline seen at all
time-points. Median ALT decreased by 49% (from 57 U/L to 29 U/L) from baseline to study end
(Fig.8B) in response to icosabutate. Median AST (Fig.8D) was similarly decreased at all time
points with icosabutate treatment (from 42 U/L at baseline to 28 U/L at study end). Rapid
normalisation of elevated plasma GGT was also observed in response to icosabutate treatment,
with significant decreases at all time-points (Fig.8F). Median GGT was decreased by 44% (from
62 U/L to 35 U/L) from baseline to study end. In contrast to icosabutate the placebo group
demonstrated minimal changes in liver enzymes (Fig.8C,E,G). FIB-4 scores were calculated at
baseline and study end in all subjects with elevated ALT and/or AST at baseline (18 and 19
subjects in the icosabutate and placebo groups respectively). Icosabutate treatment significantly
reduced FIB-4 scores, with 4/7 subjects in the previously classified (34) ‘intermediate risk of
developing severe liver disease’ category moving into the ‘low-risk’ category (Fig.8H). No

significant difference was observed in placebo treated subjects (Fig.8l).
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Discussion

We have shown that, in direct contrast to EPA, icosabutate resists accumulation in primary
human hepatocytes in vitro and avoids the EPA-associated worsening of hepatic glutathione
depletion in vivo. The in vitro findings demonstrate that specific structural modifications to EPA,
as exemplified by icosabutate, can profoundly alter its cellular partitioning and metabolism,
resulting in a much higher enrichment in the extracellular relative to the intracellular pool.
Importantly icosabutate, but not EPA, effectively reduced hepatic fibrosis and fibrogenesis in a
CD-diet mouse model resembling human NASH. This was accompanied by a significant reduction
in key inflammatory genes and hepatic concentrations of multiple NASH associated lipid species

in mice and reductions in multiple markers of liver injury in subjects at risk of NASH.

Both doses of icosabutate significantly reduced liver collagen in mice as assessed by
hydroxyproline content (both relative and total) and SR morphometry. The degree of reduction
was surprising given that mice received the fibrosis-inducing CD-diet for 6 weeks before
commencing treatment with icosabutate. Fibrosis has been reported to progresses continuously
from week 4 up to week 24 in response to a CD-diet (22). However, as we do not have liver
samples from mice immediately prior to treatment initiation after week 6 on the CD-diet, it is
uncertain if, and how much, fibrosis was present at this stage. The difference in efficacy shown
via the biochemical collagen quantification (hydroxyproline) and SR morphometry may be
related to the former measuring tissue including portal tracts with dense collagen
(underestimating the more delicate sinusoidal collagen), while the latter underestimates portal
in favour of parenchymal collagen. The anti-fibrotic effect of icosabutate thus appears to be
most prominent in the functionally relevant perisinusoidal area (38). Notably, EPA had no effect
on fibrosis as measured by HYP content, with significant worsening in fibrosis as measured by SR
morphometry. The lack of efficacy of EPA in the current model is in line with the lack of

histological response to EPA supplementation (1.8 or 2.7 g/day) in patients with NASH (9).

The histological findings are in accordance with the decreases in hepatic levels of transcripts
regulating fibrosis, fibrolysis and inflammation, where the most pronounced decreases occurred
in response to icosabutate. Interestingly, high-dose icosabutate reduced M2-type macrophages,

viewed typically as an anti-inflammatory phenotype. However, although not significant, the
14



relative reduction of CD68 (as a general macrophage marker) was comparable. We speculate
that icosabutate reduces the influx of monocytes that would have differentiated into either M1-
or M2-type macrophages. Moreover, as we previously showed (33), phenotypical M2
macrophages can have pro-inflammatory functions during liver disease progression, in contrast
to beneficial functions once the disease trigger is removed. In contrast, EXE increased YM1
expressing M2-type macrophages that have been associated with worsening of fibrosis during
progressive disease (2, 30, 32, 33, 39). However, the role of M2-type macrophages in fibrosis is
complex, since there appears to exist a yet ill-defined M2-macrophage subset that suppresses
both inflammation and fibrosis and that may speed up fibrosis resolution once the inflammatory
stimulus has disappeared (2, 40). In this context, except for a reduction in key pro-inflammatory
cytokines, there was thus no clear association between changes in the selected inflammatory
gene transcripts or macrophage (subtype) counts and improvements in fibrosis, also in view of

the finding that low-dose icosabutate was efficacious in reducing fibrosis.

There is no ideal rodent model, including the CD-diet model, that accurately reflects all
components of human NASH (41). We chose the CD-diet model as it mirrors important
phenotypical and mechanistic features of human NASH (22, 41). The CD-diet used in the current
study is designed to induce inflammation and fibrosis by firstly preventing the hepatic export of
lipids via a decrease in choline-dependent VLDL synthesis and secondly by depleting the liver of
glutathione (GSH), a pivotal intracellular thiol limiting lipid peroxide- and free radical-induced
damage (36). With respect to the first stressor, i.e., the accumulation of hepatic lipids,
icosabutate ameliorated the CD-diet induced increases in both the abundant hepatic lipids (TAG,
DAG and cholesteryl esters (CE)), and decreased the less abundant but highly bioactive
arachidonic acid (AA) and linoleic acid (LA) derived oxylipins. AA-derived HETEs are believed to
be involved in the pathogenesis of both human and murine NASH (8). However, the differences
in hepatic HETEs between the CS- and CD-diet mice were not significant. Thus, although it is
possible that reduction in hepatic HETEs has an ameliorative effect, they do not appear to play a
pivotal role in driving the CD-diet induced liver pathology. On the contrary, the CD-diet induced

a pronounced increase in hepatic 9,12,13-TriHOME (an oxidised linoleic acid metabolite) levels.
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This finding suggests that free-radical (non-enzymatic) induced peroxidation is a more important

driver of the liver pathology than enzymatic oxygenation.

This assumption also concurs with the significant decrease in hepatic GSH in response to the CD-
diet, an effect exacerbated by EPA treatment. This likely reflects increased GSH utilization in
EPA-fed mice in response to PUFA peroxidation. Given the beneficial effects of reversal of
hepatic GSH deficiency on fibrogenesis (10, 42), the exacerbation of GSH depletion may underlie
the worsening in liver fibrosis in response to EPA. Importantly, hepatic GSH and GSH/GSSG were
unchanged in EPA-treated mice fed the CS-diet. This indicates that EPA is not a pro-oxidant per
se - indeed studies have shown that LCn-3FAs can lower markers of oxidative stress (43). More
likely, we suggest that conditions characterized by increased hepatic lipid peroxidation are
unsuitable for therapeutic interventions with LC-PUFAs, as has been previously shown in both

NASH and ASH (15, 16).

The ability of icosabutate to avoid worsening of the GSH depletion induced by EPA is likely
related to its minimal incorporation into cellular membranes. Moreover, icosabutate improved
the hepatic GSH/GSSG ratio. Reduced GSH requirements and formation of GSSG likely result
from lower formation of lipid peroxides, e.g., the decrease in 9,12,13-TriHOME, seen in
response to icosabutate therapy. To what extent decreased inflammation is driving the
reductions in markers of hepatic oxidative stress, or vice versa, is uncertain. Interestingly the
arachidonic acid cascade, which is downregulated by icosabutate, is a major source of cellular

reactive oxygen species (44).

In addition, avoidance of cellular storage and B-oxidation may allow icosabutate to achieve the
extracellular concentrations required for activation of the LCn-3FA receptor, FFAR4. Indeed, we
demonstrate that icosabutate is a full FFAR4 agonist, engaging the -arrestin-2 pathway with an
EC50 that is 3-fold lower than the portal vein Cmax in rats given a therapeutic dose (19). FFAR4 is
highly expressed on macrophages/Kupffer cells (6), and its activation with high-dose LCn-3FA
feeding in mice has potent anti-inflammatory effects that in turn improve glycemic control (6).
The prominent portal vein transport of icosabutate (19) likely further enhances the ability of

icosabutate to achieve the hepatic concentrations required for targeting FFAR4 .
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In the post-hoc analysis of plasma samples from earlier clinical trials in subjects at increased risk
of NASH and CVD (hyperlipidemic, overweight/obese), the rapid and marked decrease in both
plasma ALT and AST (markers of liver inflammation and hepatocyte stress) and GGT (a marker of
cellular glutathione metabolism/oxidative stress) in response to icosabutate provides evidence
that the findings observed in our rodent studies appear to translate to humans. As decreases in
ALT (>17 U/L) are associated with histological responses to therapy in patients with NASH (45),
the 29 U/L (49%) decrease in median ALT observed in our clinical studies is promising, especially
as significant improvements were observed at all time-points. The clinical relevance of the
marked reductions in liver enzymes is further supported by the significant decrease in FIB-4 in
subjects with elevated baseline ALT and/or AST. An increase in FIB-4 over time is associated with
an increased risk of severe liver disease whilst a decrease is associated with a lower risk (34).
Our finding that 4 of 7 subjects treated with icosabutate dropped from FIB-4 levels associated
with ‘intermediate’ to ‘low’ risk (34) is therefore encouraging. The on-going phase 2 ICONA
study (NCT04052516) will specifically address the efficacy of once-daily oral icosabutate (300 mg
or 600 mg) for 52 weeks compared with placebo in patients with NASH with biopsy follow-up. In
relation to doses used in the current study in mice, the ICOSA-L dose equates to approximately
318 mg/day in humans whereas ICOSA-H corresponds to 636 mg/day using interspecies

allometric scaling (46).

In summary, the current studies demonstrate that, unlike EPA, icosabutate avoids hepatocyte
accumulation in vitro. In a delayed treatment CD-diet rodent NASH model, icosabutate
prevented the CD-diet-induced increases in NASH associated lipids and induced a potent anti-
fibrotic effect. In contrast, EPA accumulated in hepatocytes in vitro and amplified the hepatic
GSH depleting effects of the CD-diet and promoted fibrosis. The translatability of the pre-clinical
findings is supported by clinical data where icosabutate rapidly improved multiple markers of
liver injury in patients at risk of NASH. Esterification resistant LCn-3FAs, as exemplified here by
icosabutate, may thus offer a novel and efficacious therapeutic approach for the treatment of

fibrosing NASH.
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Legend to Table 1

Table 1. Fractional partitioning of icosabutate versus EPA into cellular lipids of primary human
hepatocytes

Incorporation of EPA or icosabutate into complex lipids [phospholipids (PL), triacylglycerol
(TAG), cholesteryl ester (CE)] or as free fatty acid (FFA) in primary human hepatocytes

after 24 h incubation (values in nmol/mg cell protein). Results are shown as means of 3
experiments (each with 4 parallels) £ SEM. ***p<0.001, ****p<0.0001 versus EPA, by unpaired

t-test.

Legends to Figures

Fig. 1. Structural differences between icosabutate and EPA with effects on extracellular
accumulation and utilisation as an energy source in primary human hepatocytes.

(A) Structural differences between EPA and icosabutate. (B) extracellular accumulation of EPA or
icosabutate in primary human hepatocytes after 24 h incubation (values in nmol/mg cell
protein). (C) **C-CO; production after incubation of the cells with *C-EPA or *C-icosabutate for
24 h (values in nmol/mg cell protein). Results (B, C) are shown as means of 3 experiments (each

with 4 parallels) + SEM. ****p<0.0001 versus EPA, by unpaired t-test.

Fig 2. Effects of treatments upon body weight, food intake, liver weight, plasma ALT and
glucose tolerance.

Effects of treatments on (A) body weight, (B) food intake, (C) liver weight (D) alanine
aminotransferase (ALT) (E) aspartate transaminase (AST) and (F) glucose tolerance in CS-diet-fed
mice. ¥p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 versus untreated CD-diet (versus
untreated CS diet for glucose tolerance), by one-way ANOVA (two-way for glucose tolerance).

CD, choline-deficient; CS, choline-sufficient.

Fig 3. Effects of icosabutate, EXE or EPA treatment on liver fibrosis.
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(A) Representative images of Sirius Red (SR) stained livers (Scale bars indicate 50 um). (B)
relative hepatic hydroxyproline (HYP) (C) total HYP content (D) collagen content as measured by
SR morphometry. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 versus untreated CD-diet, by

one-way ANOVA. CD, choline-deficient; CS, choline-sufficient.

Fig. 4. Effects of icosabutate and EXE on liver inflammation.
(A) Representative images of CD68+ and YM1+ stained livers from CD treatment groups (scale
bars indicate 50 um) (B) hepatic CD68+ cell numbers (C) hepatic YM1+ cell numbers. ***p<0.001

versus untreated CD-diet, by one-way ANOVA. CD, choline-deficient.

Fig. 5. Effects of treatment on key hepatic genes regulating inflammation and fibrosis.

Hepatic transcript levels for (A) type 1 collagen alpha 1 (Col1A1) (B) platelet derived growth
factor receptor beta (PDGFRp) (C) PDGF-B (D) tissue inhibitor of metalloproteinase (TIMP1) (E)
alpha-smooth muscle actin (aSMA) (F) transforming growth factor beta (TGFB1) (G) interleukin-
1 beta (IL-1B) and (H) tumour necrosis factor alpha TNF-a.. *p<0.05, **p<0.01, ***p<0.001,
**%*p<0.0001 versus untreated CD-diet, by one-way ANOVA. CD, choline-deficient; CS, choline-

sufficient.

Fig. 6. Icosabutate avoids the EPA associated exacerbation of the CD-diet induced decrease in
hepatic reduced glutathione (GSH) and inhibits the arachidonic acid (AA) cascade.

Effects of treatments on (A) GSH (B) oxidised glutathione (GSSG) (C) GSH/GSSG ratio (D)
GSH/GSSG ratio in CS-diet fed mice only. Hepatic (E) diacylglycerol (DAG)-AA stores (F)
phospholipid (PL, phosphatidylcholine)-AA stores. (G) Ratio of oxygenated linoleic acid (LA, 13-
HODE) to LA, (H) the ratio of oxygenated AA metabolites (HETEs) to AA and hepatic HETEs (I-)),
13-HODE (K) and 9,12,13-TriHOME (L). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 versus
untreated CD-diet, by one-way ANOVA. CD, choline-deficient; CS, choline-sufficient.

Fig. 7. Icosabutate prevents CD-diet induced changes in the hepatic lipidome.
Colour code represents the transformed ratio between means of the groups: green sections

denote metabolites that were reduced (negative log, fold-changes) and red sections denote
22



increased metabolites (positive log, fold-changes). Data are presented as mean + SEM, *p<0.05,
**p<0.01, ***p<0.001 versus untreated CD-diet, by unpaired t-test. CD, choline-deficient; CS,
choline-sufficient; Aa, amino acids; BCAA, branched-chain amino acids; BA, bile acids; F, free;
GC, glycine conjugated; TC, total conjugated; ChoE, cholesteryl esters; SFA, saturated fatty acids;
UFA, unsaturated fatty acids, DIHOME, dihydroxyoctadecenoic acids, oxoODE, oxo-

octadecadienoic acids; oxFA, oxidised fatty acids.

Fig. 8. Icosabutate rapidly decreases markers of liver injury in a study population at high risk
of NAFLD/NASH and CVD.

(A) Baseline characteristics of subjects treated with 600mg q.d. or placebo for up to 12 weeks.
Decreases in elevated baseline plasma ALT (B), GGT (D) and AST (F) in response to treatment
with icosabutate or placebo (C, E and G respectively). Change in FIB-4 in response to icosabutate
(H) or placebo (I). Horizontal lines for liver enzymes represent reference normal cut-off values as
defined in the clinical study report: ALT (>40 U/L), GGT (>38 U/L for females, >51 U/L for males),
AST (>34 U/L). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 versus baseline, by one-way
ANOVA (B-G) or Wilcoxon paired signed rank test (H-I).
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5um 25 um
Lipid distribution EPA Icosabutate EPA Icosabutate
FFA 0.30+0.02 0.04 + 0.003**** 0.77 £0.09 0.26 + 0.01***
TAG 9.22 +1.02 1.01 £0.28%*** 34.8+3.69 3.1+ 0.55%*%**
PL 13.0+0.83 0.12 £ 0.01**** 26.6+1.42 0.69 + 0.09****
CE 0.09 +0.06 0.01 + 0.001**** 0.090.01 0.03 + 0.002****
Total cellular lipids | 22.7 + 1.8 1.18 £ 0.29**** 62.314.9 4.1 +0.52%***

Table 1
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(1) Steric hindrance created by ethyl group in a-position
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Hepatic GSH
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Hepatic GSSG
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CDvs.CS CD +EPA vs. CD CD +ICOSA-L vs. CD CD +ICOSA-H vs. CD
Class log; (fold- | Student’s t-test | log, (fold- | Student’s t-test | log; (fold- | Student’s t-test | log; (fold- | Student’s t-test
change) (p-value) change) (p-value) change) (p-value) change) (p-value)
Amino acids
Aa_and_Aa_derivatives 027 272E01 0.18 4.36E-01 043 057 5.12E-02
BCAAs 024 2 56E-01 0.26 2 62E-01 049 0.63
Sterol Lipids
BA 033 2 66E-01 063 0.04 8 50E-01 024 423E-01
FBA 0.12 8.40E.01 0.89 036 2.48E-01 0.45 341E01
GCBA -1.00 0.46 1.53E-01 0.31 4.38E-01
TCBA 3.51E-01 042 7.86E-02 0.03 8.54E-01 0.09 7.02E-01
ChoE 9 95E.04 023 4 77E-01 032 3.75E-01
Fatty acids
FA 0.18 8.86E-02 023 1.22E-03 2 23E05
FA.16.1 0.05 5.88E.01 0.10 3.91E01 L 2.17E01
FA.18.1 0.16 349E01 0.004 9.78E-01 0.02 9.31E-01 1.45E-01
FA.18.2 0.01 9.76E.01 0.08 6.27E:01 033 9.84E.02 2.36E.-03
FA.18.3 0.07 7.95E.01 0.10 6.77E-01 075 1.16E-03
FA_omega_3 0.01 9.79E-01 026
FA omega 6 0.37 017 2.60E-01 080 1.67E-04 161E-05
FA_omega_9 0.40 126E01 012 5.83E-01 8.69E-01
MUFA 0.07 4 59E-01 4.29E.01 9 94E.02 5.49
PUFA 0.36 1.06E-03 7.63E-05
SFA 0.1 301E-04 1.63E-04
UFA 0.25 1.73E-03 1.01E-04
Oxidized fatty acids
HETE 0.29 2 84E01 7.77E-01 227E-03
HODE 032 1.54E-01 0.40 9.07E-02 062
DIHOME 9.01E-01 031 1.80E-01 ‘ 7. 60E-03
THHOME 401E04 0.46 1.09E-01 5 49E-04 2.32E.04
oxFA 003 020 3.74E-01 2 75E-03
LAdoxFA 017 3.69E01 0.34 1.16E-01 m 049
0x00DE 094 057 9 50E-02 1.10E-03
Glycerolipids
DAG 067 3.92E.06 019 9 85E.02 1.09E-03 078 1.06E-06
TAG 0.80 1.ME07 0.08 3.56E01 5 86E 04 051 5.44E 06
Sat TAG 0.31 751E-02 0.21 3.46E-01 068 2 46E-03 076 144E-03

Fig. 7

p<0.001
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A

Baseline characteristics of the total study population

Phase 1b: Phase 2: Phase 2:
Hypercholesterolemia Mixed dyslipidemia Severe HTG
NCT02364635 NCT01972178 NCT01893515
Icosabutate Placebo Icosabutate Placebo Icosabutate Placebo
(n=18) (n=6) (n=56) (n=57) (n=43) (n=44)
Age (mean) 56 51 58.7 58 53.5 51.6
BMI (mean) 28.1 27.3 31.5 31.7 31.7 32.3
Diabetes (%) 17 17 34 25 41.8 38.6
On statin (%) 100* 100* 100 100 20.5 20.9
Plasma TAG (mg/dl) 136* 192** 270 256 610 687
Non-HDL-C (mg/dl) 180* 205** 166 163 226 207
*All subjects were taken off statins 4-weeks prior fo treatment with icosabutate for phase 1b
**Lipid values are median except phase 1b (geometric mean)
Plasma ALT Plasma GGT Plasma AST
icosabutate (n=16) icosabutate (n=33) icosabutate (n=11)
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The susceptibility of PUFAs to peroxidation may limit their efficacy in NASH
Icosabutate, a modified PUFA derivative, has minimal incorporation into liver cells
Icosabutate, but not EPA, reduces inflammation and fibrosis in mice

Reduction in markers of liver injury after icosabutate treatment in humans
Activation of FFAR4 (GPR120) may underlie the beneficial effects



