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By screening a pigeon genomic DNA library, we iso-
lated a recombinant phage clone containing the a”-
globin gene. The DNA sequence of the approximately
6kbp-long insert fragment of the phage clone was de-
termined. The sequence suggested the existence of pi-
geon aP-globin gene located 3.1 kbp upstream from the
a”-globin gene. The expression of the aP-globin in late
embryo was also shown by the N-terminal amino-acid
sequence of the intact globin chain. These results show
that two adult a-globin genes, o® and aP, exist in the
pigeon genome, and the aP-globin is expressed at the
late embryo stage. The stage-specific expression sug-
gests the existence of regulatory elements and factors
interacting to inhibit transcription at the adult stage.
© 1997 Academic Press

The globin gene family has been useful for studying
stage- and tissue-specific gene expression in eukary-
otes. Particularly, the chicken globin families are well
characterized as developmentally regulated genes. The
a-globin gene family consists of three closely linked
genes, two (a”- and «P-globin, adult type «a-globin
genes) of which are expressed in both primitive (pres-
ent from 2 to 5 days of embryonic life) and definitive
(present from 6 days embryo through adult life) cell
lineages and one (w-globin) of which is expressed in a
primitive lineage (1). The three genes are arranged in
order of their expression during development, 5’ - 7 -
a® - o® - 3’. The complete nucleotide sequences of the
a”- and aP-genes, which are very different in sequence,
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were reported by Dodgson and Engel (2). The o*- and
aP-globins were detected at a ratio of approximately
3:1 in definitive lineage (late embryo and adult stage)
and at a ratio of approximately 2:1 in primitive lineage
(early embryonic stage) (3). This finding indicates that
the proportion of o”- and a-globins vary during devel-
opment. Most avian species generally have two adult
type a-globin genes (o* and «), as shown in the
chicken(2). Although DNA sequences of these genes
and identification and characterization of cis-regula-
tory elements near the members of the gene family
were studied in several species (2,4-6), the mechanism
of their coordinate expression during development and
why avian species have two very different adult a-glo-
bin genes remain unclear.

In contrast to most avian species having two adult
a-globins (o® and «P) such as chicken (7), turkey (8),
goose (9), and goshawk (10), several avian species such
as pigeon (11), parakeet (12), penguin (13), and Blue-
and-Yellow Macaw (14) do not have aP-globin at the
adult stage. Therefore no information is available on
the aP-globin gene in these species. Providing some
information on the «P-globin gene in these species
would be a valuable contribution to the study of coordi-
nate gene expression during development and the esti-
mate of molecular evolution of a-globin in avian. In the
present experiment, we examined whether or not the
aP-globin gene existed upstream from the a”-globin
gene in pigeon, which was described with the complete
nucleotide sequence of a”-globin cDNA (15). We iso-
lated a recombinant phage clone containing pigeon «°-
globin gene located 3.1 kbp upstream from the a”-glo-
bin gene by screening a pigeon genomic DNA library,
and the DNA sequence of the approximately 6 kbp-long
insert fragment including the two adult a-globin genes,
a” and o, was determined. The deduced amino-acid
sequence of aP-globin was used for the construction of
phylogenetic tree to estimate the evolutionary distance
between pigeon and other avian species. The hemoglo-
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bin components in the late embryo stage were also
studied. The results show that the «®-globin gene exists
in the pigeon genome and is expressed only in the late
embryo but not in the adult stage.

MATERIALS AND METHODS

Cloning and DNA sequencing. A pigeon genomic DNA library
(lambda GEM-12) was obtained from Prof. Nelson Horseman (De-
partment of Physiology and Biophysics, University of Cincinnati,
Ohio, USA) and screened with pigeon o”- globin ¢cDNA probe (15)
using ECL Direct nucleic-acid labelling and detection system (Amer-
sham). A positive lambda phage clone containing a 15kbp genomic
DNA insert was isolated and denoted as APa-1. About 6kbp long
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insert was sequenced after subcloning into pUC19 vector. DNA se-
quencing was performed using a Thermo Sequenase Sequencing Kit
(Amersham) with an automated DNA sequencer (Model SQ5500, HI-
TACHI).

Separation of hemoglobin components and amino acid sequencing.
Pigeon erythrocytes were obtained from 7 to 16 day old embryos.
The hemoglobin components were separated by ion-exchange chro-
matography on a CM-Men Sep cartridge (Millphore Co. USA). The
column was equilibrated with 20mM phosphate buffer (pH 6.3). The
hemoglobin components were eluted with a linear gradient of 0-0.1M
NaCl over 7min at a flow rate of 1.5ml/min. The absorbance was
monitored at 280nm. The a- and S-globins from hemoglobin were
separated by reversed-phase HPLC using a column containing u-
Bondasphere C4.

The first 40 residues or so from the N-terminus of intact globins
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TGGCCGCCTTGGGCAACGCTGTCAAGAGCCTGGGCAACCTCAGCCAAGCCCTGTCTGACCTCAGCGACCTGCATGCCTACAACCTGCGTGTCGACCCTGTCAACT TCAAGGCAGGCGGGEGACGGGGCTCAGGGGCLGGG 1540
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TCCCTCCAGAGAAGAAAAGGTGAGTGAGCAACCGTTTTGCTGTTTAGCTGCCGGCCCAGCGCTGAACAGCAGCAGTTGCGG TCTAGCAAAGGGCCACAGGTATCAGCAGTTTGGAGTCTGAATTAAAAAAAAATAAAATC 3080
ATTGTCTTTAGATCACAGGTGATGGGTTAGGAGATAATGAACTAGCCTTTGGTGTGTTCTGTGCTATGATACCAGAGGGAGAAGAGTGTTGTGAGGGATGGGAGAAGGTGCATGAAGAGCAGTTTCTGCAGTGGCAAGCA 3220
CAGGCAGCAGCCAGGTAACAGGCACGTGGGGACCCTGCCTGTATGGAAACATGGGACTATGACAGCCCATGCTTCCCCAAGTGCACTCATGGGCCCACAGTGCTTTTCCTCCATCCTTAGACACATCCCAGTCTACATIC 3360
CAGTGTCTTCCTGTGCATTTACACCCATTTACTCTTGTG TCACCAGTTTGAAGGGCTCTTCTGCCTCTGCAGTTTGTCCCCGTGATGTACACACAGGCAGCAGATGCACCACCCCGAATGCTG TTTCTCTGGGCTCCGAT 3500
TCTCAGAAGATTGGCCCCTCTGTCCTCCCCTCCTCCCCTGCTCTGAAATGGTGCCAGCTCAAGCTAATCTCCCCTGAACACAAATGATAAGAACCATCAGCCATGGAGGAAACATGGGTGTGAACTGTCCCCTGCCTGTC 3640
TGCGCCACCTTTTGAACCTACTGGAAGCACTGCAGCCCTCCTCACCTTCCTCACCCTCCCTGTCTTCCTCACCATCACCACCTTCCTTGCCTTCCTCACCATCATTTGAGGCTCACAGGGCTCACCATGGGCTGCTGCAG 3780
CCTCCGTGCCTTTCTCCCTGGGCTGTGAGCTCCTGCTGCTGGAGGCCAGTGCTTCCACCAGTGCCCACTGATCCCCOTGGCTCTGCTGAGCGTCCCCTGGCACAGAGTCAGGG TGACCTGGTCCCCCATGGCACTGGGAT 3920
TGGCACATGTGCAGAAGGGAGGGCCAGGGCAGGGGAGCTCCAGGGTTTGTATGCAGAGTGG TGCAGCTGTGGT TTGGGGAGCAGGAAAAGGGCACACGCTTTGGGGTACACTGGTTTGGGG TGCACTGAGGGAACGAGAG 1060
CAGTAGGTGCAGTCAGGCAATATGGATGTATGTATAGGGGCTGCACTGGATGGCAGTGTGTGTATAGGGGCACATGTGCGGGCAGAGACGG TG TG TGCACAGGGGCTGCATTGGATGGCAGCG TG TGTAGGGGCACTG TG 1200
CACACAGGGGCAGCTCACGTGTGTGCGCGGGCGCTGTGTTGGATGGG TCATGCATG TGCAGGTGCCCACGGGGCAGCATGTGGG TG TTCCGGECCCTGEGCAGGTTCAGTCTGTGGGGCACAGGCTCCCACCATACTATT 1840
GAAGTTATAATGCCACCCTCTACCGCTGTCCCCTCCATCCTGCCCGCTTGTCCCTGCCAGAGCACATGCATGCTGTGCAGGGCTGCCTGCGCCCGEGGGACCAAGTCAGTACCTGGCTCCAAGCCCTGAACCCAACCTGT 4480
GCCGGGGGGGAGACAGACTCCTCCACCTGTGCCACTGAAGACCGTAAACCTAACCTGAAGCCTAAACCTAAAACTAAACCAAAGCCTAAGCCTAAACCTAAGCCTAACCCTGCAG TCAGTCTG TGCCAGAGGGGATGGAC 1620
CACTCAGCCTGCGCTGATGTGATCCCTGGCCCTAATCCTGACTCGAAACCCATCAGGTACCOGGGGCCAGACCCCCCCAGCOGG TGCCGGTECCGCAGAGCHGAGCHGGGTCCGG TGCTEGCCEGGGGEEGELEGCTCCG 1760
CTGGCCGGGCTCCAGCEGCGGLGGEGCCGEAGCEEEGCEEGGCEEECCEEHCCEGGCTGEGCCCEEGECEEGCGCTGCCCCGGCACGCATATAAGGGACAGCGGCGGCCAGCEAGGGCACCCGTGCTGGGGECTGCCAAC 4900
GCGAAGGTGACACCATGGTGCTGTCTGCCAACGACAAGAGCAACGTGAAGGCCGTCTTCGGCAAAATCGGCGGCCAGGCCOGTGACTTGGGTCGTGAAGCCCTGGAGAGG TATGTGGTCATCCGTCATTACCCCATCTCT 5040
VLSANDEKS NV KAVEFEGKTGGQAGDLGGEATLER
TGTCTGTCTGTGACTCCATCCCATCTGCCCCCATACTCTCCCCATCCATAACTGTCCCTGTTCTATGTGGCCCTGGCTCTG TCTCATCTGTCCCCAACTG TCCCTGATTGCCTCTG TCCCCCAGG TTGTTCATCACCTAC 5180
L F I TY
CCCCAGACCAAGACCTACTTCCCCCACTTCGACCTGTCACATGGCTCCGCTCAGATCAAGGGGCACGGCAAGAAGG TGGCGGAGGCACTGGTTGAGGCTGCCAACCACATCGATGACATCGCTGG TGCCCTCTCCAAGCT 5320
PQTKTY FPHOFDLSHEGS AQ 1T KGHGK KV AEALVEAANTITDDIAGALS KL
GAGCGACCTCCACGCCCAAAAGCTCCGTGTGGACCCCGTCAACTTCAAAGTGAGCATCTGGGAAGGGG TGACCAGTCTGGCTCCCCTCCTGCACACACCTCTGGCTACCCCCTCACCTCACCCCCTTGCTCACCATCTCE 5460
SDPLHAQKILZRVDPVNTEK
TTTTGCCTTTCAGCTGCTGGGTCACTGCTTCCTGGTGGTCGTGGCCGTCCACTTCCCCTCTCTCCTGACCCLGGAGGTCCATGCTTCCCTGGACAAGTTCG TG TG TGCCGTGGGCACCGTCCTTACTGCCAAGTACCGTT 5600
LLGHCFLYYY AVHFPSLLTPEVHASLDKFYCAVGTVY LTAKVYR
AAGATGCGGCACCATGGCTAGAGCTGGACACAACCTGCTGCCAGCCCTCCAACAGTGAGCAACCAAATGATCTGAAATAAAATCTGTTCCATTTGTGCTCCATCG TTGGCG TCCTGCTCTGGCTCCTGCCTGTGGGGAGG 5740
GAGCGGGAGAGATCTGTGCTAGGGGTCCAAACAGGGGGTCCCCCCTGCCAGGTGOGCATGTAGGTGAAATGGGCTCTTGTT TTGCTGTCTCTGAGAGGAGGCAGCCTTTGGGTGGC TG TGG TGCAGACACTGCTCTGCTA 5880
GCTGTGGAGCT 5891

FIG. 1. Nucleotide and deduced amino-acid sequence of the a-globin genes. The amino acid sequences are shown in one-letter code.
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FIG. 2. Separation of hemoglobin components of pigeon embry-
onic blood by ion-exchange chromatography (A). N-terminal amino-
acid sequences of pigeon globin chains in embryonic blood (B). For
details see “Materials and methods”. «® oP-globin chain, o®: o*-
globin chain, g: 8-globin chain.

were automatically sequenced. The amino-acid sequences were de-
termined using a gas phase automatic sequence analyzer (Model
PSQ-1, Shimadzu Co., Kyoto) equipped with an online PTH analyzer
(Model, PTH-1, Shimadzu Co.).

Analysis of a-globin chains. The a-globin amino-acid sequence
data of the other avian and Western painted turtle were downloaded
from the SWISS-PROT database. These sequence data and deduced
amino acid sequence of pigeon «”- and «P-globin gene were used
for the neighbor-joining analysis. The analysis was performed using
programs in the PHYLIP package (version 3.5c) from Felsenstein
(16,17).

RESULTS

DNA Sequence of the Two Pigeon a-Globin Genes

The phage clone, APa-1, containing approximately a
15 kbp-long insert fragment including the o”*-globin
gene, was isolated by screening the pigeon genomic
DNA library and subcloned in plasmid pUC19. The ho-
mologous region (pigeon «°-like) of the chicken a°-glo-
bin gene located 3.1kbp upstream from the pigeon o”-
globin gene. The nucleotide sequence of the 6kbp long
region contained the «P-like and «”-globin gene and
the deduced amino-acid sequences are shown in Fig.1.
These sequences show that the pigeon genome contains
the «°-globin gene encoding a 140 amino acid polypep-
tide. The sequence of the «”-globin gene largely
matches with that derived from the cDNA clone de-
scribed by Eguchi et al. (15), although differences occur
at positions 15 and 130 of the a”-globin chain between
the sequence from genomic clone and that from cDNA
clone.

Detection of «®-Globin Chain at Embryo Stage

We surveyed hemoglobin components in pigeon
erythrocytes of late embryo stage (7 to 16 day old em-
bryos). The erythrocytes of the pigeon late embryo con-
tained two hemoglobin components. These two compo-
nents, hemoglobin A (HbA) and hemoglobin D (HbD),
were separated by ion-exchange chromatography on a
CM-Men Sep cartridge column. The elution profiles of
the HbA and HbD are shown in Fig.2A. The «a- and -
globin chains from hemoglobin components of embryo
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stage were separated by reversed-phase HPLC using a
u-Bondasphere C4 column (the elution profiles of the
a- and g-globin chains are not shown). The first 40
residues or so from the N-terminus of intact globins
were sequenced (Fig. 2B). The N-terminal amino acid
sequence of the a-globin chain was identical with the
deduced sequence of the «°-globin gene coding region
in pigeon genomic DNA clone (\Pa-1).

Evolutionary Distance of a-Globin Chains

We constructed phylogenetic trees from «-globin
amino acid sequence data by neighbor-joining (NJ)
(Fig.3A and B) using Reptilia (Western Painted turtle)
as an outgroup. The evolutionary distance between pi-
geon and chicken is 0.18 substitution per site for the
a”-globin chain and 0.23 for the a°-globin chain. These
values indicate that the amino acid substitution rate
is higher in a®-globin chain than in o*.

DISCUSSION

The recombinant phage clone, APa-1, containing two
pigeon «a-globin genes, o® and «°, was isolated by
screening the pigeon genomic DNA library with a pi-
geon a”-globin cDNA probe. The nucleotide sequence
of a 6 kbp long, including the two a-globin genes, were
determined from this phage clone (Fig.1). Additionally,
two types of hemoglobin components, HbA and HbD,
were detected in pigeon late embryonic blood by ion-
exchange chromatography. The N-terminal amino acid
sequence of the globin chain shows that the «"-globin
is expressed at the late embryo stage (Fig.2). Amino
acid sequence differences occurred at positions 15 and
130 of the o*-globin chain between the sequence from
genomic clone and that previously reported from cDNA
clone (15). These differences may be due to sequencing

Pigeon

Goose
Chicken
Turkey
Goshawk

Turtle

—
0.02 substitution/sitc

Pigeon

Goose

Chicken

Turkey

Goshawk

Turtle

—
0.02 substitution/site

FIG. 3. Phylogenetic trees inferred by neighbor-joining for the
a”-globin chain (A) and «aP-globin chain (B). Western painted turtle
(Reptilia) was used as an outgroup.
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errors in the cDNA, because at position 15, the result
from the genomic DNA is supported from the amino
acid sequence data (Fig.2B), and there is a Cys at posi-
tion 130 in most avian species.

The a-globin gene family of avian species consists of
three closely linked genes, 7, a® and o”. In contrast to
primitive cells’ specific = gene, the expression of o*
and « is seen in both primitive and definitive cells.
Knezetic and Felsenfeld (18) proposed that the concen-
tration-dependent action of three factors, an NF1 fam-
ily member, a Y-box factor, and an Sp1l-like factor, is
responsible for the stage-specific expression of the =7
gene. However, the mechanism of the coordinate gene
expression of the adult globin genes, «* and «P, re-
mains unknown. A silencer and an enhancer elements
located at the 3’-side of the chicken a-globin gene do-
main were identified (6). We consider the possibility
that the stage-specific expression of the a°-globin gene
in pigeon is controlled by a different mechanism than
the embryonic globin gene, 7. It is tempting to specu-
late that the interaction of these regulatory elements
and promoter region reduces the activity of the oP-
globin promoter at the adult stage.

Hiebl et al. (9, 19) have considered two possibilities:
one, that the aP-gene is a biological reserve to situa-
tively enlarge the normal hemoglobin function in avian
species which need hemoglobins to adjust quickly to
different environments, such as near sea-level to high
altitudes; and two, that it is an intermediate between
a functional gene, reduced in its expression, and a pseu-
dogene evidenced by its low expression rate (approxi-
mately 10-25%) in three species of goose. However, the
aP-gene has been expressed in adult chickens and tur-
keys having inferior ability for flying. A pigeon adult
a-globin gene, o® and aP, were expressed at the late
embryo stage (Fig.2). Godovac-Zimmermann and Brau-
nitzer (14) suggested that avian «®-globin chains possi-
bly, have no functional importance in the adult, be-
cause avian aP-globin chains have been reported to
show a much higher evolutionary rate than a”-globin
chains (20). This is in accordance with the neutral mu-
tation-random drift hypothesis (21). The «P-globin
chain of pigeon showed a much higher evolutionary
rate than o”-globin chain (Fig.3).Thus, the a°-globin
chain may not be needed for adult life, although the
pigeon a-globin is expressed in the late embryo stage.
This study will serve as a basis for studying the coordi-
nate expression and the molecular evolution of the a-
globin gene family in avian.
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