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Abstract
Alzheimer’s disease’s pathophysiology is still a conundrum. Growing number of evidences have elucidated the involvement 
of oxidative stress in the pathology of AD rendering it a major target for therapeutic development. Reactive oxygen species 
(ROS) generated by altered mitochondrial function, dysregulated electron transport chain and other sources elevate aggre-
gated Aβ and neurofibrillary tangles which further stimulating the production of ROS. Oxidative stress induced damage to 
lipids, proteins and DNA result in neuronal death which leads to AD. In addition, oxidative stress induces apoptosis that is 
triggered by the modulation of ERK1/2 and Nrf2 pathway followed by increased GSK-3β expression and decreased PP2A 
activity. Oxidative stress exaggerates disease condition by interfering with various signaling pathways like RCAN1, CREB/
ERK, Nrf2, PP2A, NFκB and PI3K/Akt. Studies have reported the role of TNF-α in oxidative stress stimulation that has been 
regulated by drugs like etanercept increasing the level of anti-oxidants. Other drugs like pramipexole, memantine, carvedilol, 
and melatonin have been reported to activate CREB/RCAN1 and Nrf2 pathways. In line with this, epigallocatechin gallate 
and genistein also target Nrf2 and CREB pathway leading to activation of downstream pathways like ARE and Keap1 which 
ameliorate oxidative stress condition. Donepezil and resveratrol reduce oxidative stress and activate AMPK pathway along 
with PP2A activation thus promoting tau dephosphorylation and neuronal survival. This study describes in detail the role 
of oxidative stress in AD, major signaling pathways involving oxidative stress induced AD and drugs under development 
targeting these pathways which may aid in therapeutic advances for AD.
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Introduction

Alzheimer’s disease is a rapidly progressing neurodegen-
erative disorder leading to the decline of cognitive func-
tions [1]. Major pathologies of the disease include amyloid 
plaque deposition, neurofibrillary tangle formation, oxida-
tive stress, cholinergic insufficiency, platelet aggregation 
[2], excitotoxicity and neuroinflammation [3, 4] (Fig. 1). 
Currently there are only few FDA approved drugs for the 
treatment of AD which provide only symptomatic relief. 
That include galantamine, donepezil and rivastigmine 
which are acetylcholinesterase inhibitors and memantine 
which is a NMDA receptor blocker [5]. Recently, anti-Aβ 
monoclonal antibodies (mabs) (viz., aducanumab, bapineu-
zumab, gantenerumab, solanezumab, and lecanemab) that 
can alter the root cause of AD have been proposed. These 
are under clinical trials based on the hypothesis that a sys-
temic malfunction of cell-mediated removal of Aβ plays a 
role in the onset and progression of AD [6]. As the exact 
causative factor for AD is still unknown, drug development 
for the treatment of AD has become very challenging [5]. 
Oxidative stress is reported to be a crucial contributor in 
the progression of Alzheimer’s disease [7]. Imbalance in 
the production of free radicals (FRs) and anti-oxidants of 
the body is mainly responsible for it. Oxidative stress also 

results in the disruption of biomolecules including lipids, 
proteins and nucleic acids of the cells [8, 9]. This damage 
leads to the destruction of various cells in the brain. The 
major contributors of reactive oxygen species in the body 
are believed to be energy transform systems. In these, an 
electron is transferred from electron donor to acceptor and 
during this process various intermediates are formed which 
are harmful free radicals (FRs) like OH.,  OH−, NO. and 
 H2O2 [10]. The role of mitochondria is also well established 
in the generation of FRs. Mitochondria contribute as a major 
source of generation of energy in the form of ATP that gen-
erates reactive oxygen species while producing energy [3]. 
Due to mitochondrial dysfunction, there occurs leakage of 
electron from the mitochondrial respiratory chain leading to 
oxidative stress induced AD [11].

Brain is considered highly susceptible towards the damage 
caused by oxidative stress due to many reasons. The major 
ones include excessive amount of iron, high availability of pol-
yunsaturated fatty acids, high demand of energy, and relatively 
high consumption of oxygen. Aβ oligomers present in the AD 
brain may also promote the generation of reactive oxygen spe-
cies which further damage the neurons and affect the cognitive 
functions [12]. ROS generated during dysregulated cellular 
respiration is also responsible for damage caused to neuronal 
functions. Due to reduction in the generation of ATP as a result 

Fig. 1  Pathophysiologi-
cal cascades in Alzheimer’s 
disease. Figure shows various 
pathologies responsible for the 
development of Alzheimer’s 
disease including amyloid 
plaque deposition in the brain 
extraneuronally and neurofibril-
lary tangle formation due to 
destabilization of microtubules 
as a result of tau hyperphospho-
rylation intraneuronally. Besides 
these, other major pathological 
hallmarks are oxidative stress 
which is in line with mito-
chondrial dysfunction. Further, 
neuroinflammation, cholinergic 
insufficiency and excitotoxicity 
also contribute in the disease 
progression
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of damaged mitochondria in AD and damage caused to DNA, 
proteins and lipids, the functions of neurons get disturbed 
[13]. Brain cells require efficacious anti-oxidant mechanism 
to protect against oxidative stress condition which is compro-
mised in AD patients [14]. Lipid peroxidation associated with 
oxidative stress results in the generation of 4-hydroxynonenal 
which is toxic to neuronal cells. This causes loss of long-term 
potentiation and disrupted memory and learning functions of 
the brain [15]. In addition, calcium influx modulations caused 
by mitochondrial dysfunction results in the hindrance of sig-
nal transduction which can cause synaptic loss and neurode-
generation [16, 17]. Reduction in cholinergic neurons due to 
degeneration caused by oxidative stress leads to the downfall 
in acetylcholine. The expression of choline acetyl transferase 
enzyme required for the synthesis of acetylcholine has also 
been found to be reduced that progresses to synaptic dysfunc-
tion [18]. Various molecular pathways are involved in oxida-
tive stress induced AD that includes RCAN1, CREB, Nrf2 
and PP2A. These pathways are dysregulated due to ROS in the 
brain of AD patients ultimately leading to neurodegeneration. 
RCAN1 is a calcineurin regulator which is over-expressed in 
Alzheimer’s disease. It is correlated with increased GSK3-β 
activity and consequently contributes in tau hyperphospho-
rylation. cAMP response element binding protein (CREB) is 
responsible for the proteasomal degradation of RCAN1 but 
under oxidative stress CREB expression is also modulated 
[19–21]. Another pathway regulating oxidative stress involves 
Nrf2, which is essential for controlling mitochondrial dynam-
ics, mitophagy, and biogenesis. Age-related changes in Nrf2 
activity have been seen in experimental animals accompanied 
by reduced glutathione synthesis. It has been reported that 
Nrf2 pathway is compromised during aging [22]. In addition, 
ROS promotes PP2A inhibition and GSK3β gets overactivated 
leading to hyperphosphorylation of tau protein. It also acti-
vates NF-κB mediated neuroinflammatory pathway linking 
oxidative stress with neuroinflammation and contribute in AD 
progression [13, 15, 23]. Modulating these pathways by using 
various drugs including carvedilol, donepezil, memantine, 
melatonin, pramipexole, resveratrol, etanercept, epigallocate-
chin gallate and genistein may combat oxidative stress induced 
Alzheimer’s disease. Considering this, present study explains 
in detail the mechanism behind oxidative stress induced AD 
along with the signaling pathways involved. It focuses on the 
drugs in clinical trials targeting the pathways like RCAN1, 
CREB/ERK, PP2A, NFκB and PI3K/Akt, modulating which 
can be beneficial for the treatment of AD.

Materials and methods

Various databases and search engines have been used to col-
lect the data for the manuscript including Google Scholar, 
PubMed, PubChem and Clinicaltrials.gov.in.

Impact of oxidative stress on lipids

Cell membrane is majorly composed of lipids which are 
highly prone to the destruction caused by free radicals. 
Lipids undergo peroxidation which results in the produc-
tion of ketones, lipid peroxides and aldehydes. The propa-
gating radicals withdraw a hydrogen atom from a molecule 
and render it reactive and form a new free radical. These 
free radicals attack unsaturated fatty acids which further 
react with molecular oxygen to form peroxy radical which 
is highly reactive. Consequently, other toxic compounds are 
formed like malondialdehyde, formaldehyde, propionalde-
hyde, and acetaldehyde which cause cross linking of lipids 
and proteins rendering them non-functional [24]. Due to 
oxidation of arachidonic acid, isoprostanes and isofurans 
are formed. Similarly, oxidation of docosahexaenoic acid 
leads to the production of neuroprostanes or neurofurans 
and oxidation of adrenic acid yields homo-isoprostanes or 
di-homo-isofurans. These oxidation products of lipids are 
harmful to the cell survival. As brain is having high lipid 
content as well as its oxygen demand is also high, it is more 
susceptible to the damage caused by these lipid oxidation 
products [25].

Impact of oxidative stress on proteins

Free radicals attack the amino acids and interfere in the func-
tions of proteins by initiating cross-linking. Disulfide bonds 
present in the proteins make them susceptible towards dam-
age caused by free radicals. Protein oxidation products may 
react with lipid oxidation products as well as carbohydrate 
oxidation products resulting in the conformational change 
of proteins making them non-functional. It is believed that 
carbonyl groups in proteins make them susceptible towards 
oxidative damage but it is still not clear [24]. As proteins are 
abundantly present and they have very high-rate constants 
for reactions, they are more susceptible to oxidative dam-
age. The backbone and side chains of proteins get damaged 
resulting in their modifications. The damage caused to pro-
teins include breakdown of protein backbone and side chain 
fragmentation, cross-linking resulting in accumulation of 
proteins, conformational changes and abnormal or loss of 
functions. Free radicals produce peroxyl radicals and perox-
ides which further oxidize other proteins hindering several 
physiological functions [26].

Impact of oxidative stress on DNA

ROS results in the generation of DNA-protein cross-links, 
damage to the DNA backbone and modify the purine and 
pyrimidine bases leading to highly cytotoxic compounds. 
These modifications can also lead to mutations which can 
come out to be carcinogenic. Free radicals cause breakage 
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of DNA backbone. Hydroxyl radicals react with the bases 
and cause alterations in them like modification of guanine 
to 8-hydroxyguanosine. Similarly, nitric oxide free radicals 
cause deamination of DNA bases [24]. Mitochondrial DNA 
is more susceptible to the disfigurement caused by reactive 
oxygen species and reactive nitrogen species because they 
are in close proximity of the source of these free radicals. 
ROS attack pyrimidine and purine bases and withdraw 
hydrogen from them leading to the formation of adducts like 
thymidine glycol, 5-hydroxydeoxyuridine, 5-formyl uracil, 
alloxan, etc. The adducts formed by the attack of free radi-
cals in sugar moieties of DNA are erythrose, glycolic acid 
and 8-hydroxydeoxyguanosine. These adducts are carcino-
genic and also act as biomarker for oxidative stress induced 
DNA damage. Peroxynitrite, a reactive nitrogen species also 
produces DNA lesions with 8-nitrogunanine and 8-oxyde-
oxyguanosine. Studies revealed that RNAs are more prone 
to oxidative damage than DNAs as they are less protected by 
proteins and due to their single stranded nature [27].

ROS and associated neurological Complications

ROS have crucial pathophysiological role which enhances 
the vulnerability of brain cells towards oxidative damage. 
The higher oxygen demand and lipid-rich content in brain 
makes it susceptible to oxidative stress. ROS are reported to 
stimulate various molecular cascades that result in neurode-
generation and related neurological disorders including AD. 
The major pathological damage caused by ROS and their 
related neurological complications have been described in 
Table 1.

Insight into the role of oxidative stress in AD 
progression

Oxidative stress is considered to be a major contributor 
in the pathology of many neurodegenerative diseases [28] 
including AD. In various examinations of AD brains massive 

oxidative damage has been found. ROS are originated by 
endogenous substances and processes or by exogenous fac-
tors like toxins, environmental pollutants and smoking. 
These undergo redox reactions and cause damage to the cell 
by promoting mitochondrial dysfunction and peroxidation 
of lipids, proteins and nucleic acids [29]. Along with the 
increased concentration of FRs there was reduced level of 
anti-oxidants like catalase and superoxide dismutase. It has 
been observed that majority of oxidative biomarkers were at 
synapses of neurons indicating that oxidative stress induces 
damage to neuronal synapse and disrupt signal transduction 
[30].

Mitochondrial dysfunction is a major contributor in 
neurodegenerative diseases like AD. Mitochondria act as 
source of ROS generation as well as the target of oxidative 
damage leading to AD progression. There is accretion of 
Aβ plaques which form chelates with metal ions like  Cu2+, 
 Zn2+, and  Fe3+ in AD. These chelates then undergo various 
chemical reactions leading to altered oxidation states. These 
metal ions with transformed oxidation states interact with 
hydrogen peroxide and form highly reactive and destructive 
FRs [31]. Zn is important for cognitive functions of brain 
but due to the activation of inflammatory mediators towards 
aggregated Aβ, the homeostasis of Zn is altered in AD. This 
leads to the accumulation of Zn in the brains along with 
Aβ leading to cytotoxicity. In the brain, increased oxidative 
stress can cause rise in free calcium levels, excitotoxicity 
and subsequently neurotoxicity [32]. The nervous system 
is abundant in unsaturated fatty acid levels and iron content 
which make it susceptible to oxidative damage. It also acts 
as source of origination of hydroxyl and other FRs due to 
the presence of iron in large quantities. In AD, due to loss 
of synaptic function, increased ROS production, decreased 
anti-oxidant activity and presence of Aβ and tau tangles, 
there occurs degeneration of neuronal cells [33]. Oxida-
tive stress also gives rise to the generation of stress gran-
ules. Stress granules are condensed clusters of proteins and 
untranslated mRNAs that emerge during stress condition in 

Table 1  Neurological complications associated with ROS

S. No. Effect Consequence References

1) ROS Brain glucose hypometabolism Energy deprivation leading to neuronal death [116]
2) Increased APP expression Aggregation of Aβ [117]
3) Presynaptic mitochondrial damage Synaptic dysfunction [118]
4) Mitochondrial electron transport chain (ETC) 

complex modification
Further increase in oxidative stress condition [119]

5) Reduction in CREB and subsequent increase 
in GSK-3β expression

Tau hyperphosphorylation and NFTs formation [19, 20, 21].

6) mTOR dependent autophagy reduction Protein oxidative damage and accumulation of dam-
aged proteins

[120]

7) Decreased Nrf2 activity ROS induced apoptotic death of neuronal cell [121]
8) Increased caspases activity Apoptotic neuronal cell death [13]
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cytosol [34]. The composition of nuclear and cytoplasmic 
stress granules is different from one another. The nuclear one 
consists of factors responsible for pre-mRNA processing and 
heat shock transcription factor 1/2 and the latter one contains 
mRNA which are non-translating. The cytoplasmic stress 
granules disappear as soon as the stress is removed. These 
stress granules can also convert into persistent aggregates 
in pathological conditions like in AD. Acute stress derived 
stress granules are protective in action and reduce apoptosis. 
In AD, the stress granules alter the functions of neurons and 
engulf the vital proteins including ribonucleoproteins which 
progresses the disease [35].

Another factor responsible for oxidative stress induced 
AD is ferroptosis. It is an emerging concept explaining iron-
dependent programmed cell death. It has been found to be 
linked with the neuronal cell death due to oxidative stress. 
Studies have shown the involvement of BID (a pro-apoptotic 
protein) in ferroptosis leading to dysfunction of mitochondria 
and cell death under oxidative stress. Ferroptosis involves the 
production of iron mediated production of FRs. Many stud-
ies are going on to determine the exact mechanism and con-
sequences of ferroptosis in AD [9]. Oxidative stress is also 
supposed to interfere in acetylcholine dependent neuronal 
functions. It destroys the neurons which supply cholineacetyl 
transferase required for the synthesis of acetylcholine. There-
fore, it indirectly affects the cognitive functions and signal 
transduction processes in the neurons. Reduced levels of glu-
tathione, an antioxidant found in the brain, is also seen in AD 

patients, which further stimulates the generation of FRs and 
cause subsequent damage to the neuronal cells [18]. In addi-
tion, oxidative stress and Aβ deposition increase the stress in 
endoplasmic reticulum which can give rise to neuronal cell 
death. Phosphatase and tensin homolog (PTEN), is a tumor 
suppressor gene which is important for cell survival and death. 
In various studies it is seen that PTEN inhibitors activate PI3/
Akt pathway and reduce oxidative stress induced ER stress 
thus inhibit apoptosis. PI3/Akt pathway dysregulation has 
been found to be associated with the pathology of AD [36]. 
Similarly, nuclear factor-kappa light chain enhancer of acti-
vated B-cells (NFκB) is also accountable for the regulation 
of various genes implying in stress conditions. Heat shock 
proteins reduce the levels of oxidative stress by reducing the 
levels of ROS inside the cells via increasing the concentra-
tion of reduced glutathione. It is evident from many studies 
that activation of Erk/Akt pathway increases the action of heat 
shock proteins and suppress the damage caused by hydrogen 
peroxide FRs [37]. Protein kinase C is also indulged in the 
stimulation of NFκB which is a crucial regulator of oxidative 
stress [38] (Fig. 2). Therefore, targeting these pathways may 
aid in ameliorating the disease condition.

Oxidative stress and advanced glycation 
end‑products in AD progression

The products formed upon glycation of proteins non-
enzymatically give rise to irreversible products known as 

Fig. 2  Molecular pathways 
involved in the aggravation of 
oxidative stress induced neuro-
degeneration in AD. It shows 
various pathways involved in 
the damage induced by oxida-
tive stress. These pathways 
influence various downstream 
pathways like PI3/Akt pathway, 
NFκB pathway, PP2A/Erk 
pathway, Nrf2, HO-1, kelch-
like ECH-associated protein 1 
(Keap-1), antioxidant response 
elements (ARE), cAMP 
response element-binding 
protein (CREB) and GSK3β 
which contribute in the disease 
progression by altering normal 
physiological condition
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advanced glycation end-products (AGEs). This process is 
mediated by reducing sugars and dicarbonyls. In AD, there 
occurs dyshomeostasis in the generation and clearance of 
AGEs leading to their accumulation. Excessive aggregation 
of AGEs and dicarbonyls result in disruption of mitochon-
drial respiratory chain and alter the mitochondrial membrane 
permeability resulting in oxidative stress [39]. AGEs by 
binding with receptor for advanced glycation end products 
(RAGE) and by the generation of protein cross-links, bring 
out various biological consequences. By activating other 
downstream pathways RAGE is involved in the regulation of 
neurite outgrowth, cell survival, cell proliferation and apop-
tosis [40]. Oxidative stress has been reported to stimulate the 
generation of AGEs by glycoxidation and lipid peroxidation. 
Numerous reactive carbonyl compounds are produced by 
the ROS-mediated glycoxidation and lipid peroxidation pro-
cesses. Protein cross-linking and DNA damage arise from 
these electrophilically triggered carbonyl compounds’ sub-
sequent reactions with cellular proteins, lipids, and nucleic 
acids. These prolonged and intricate reactions result in the 
generation of a range of AGEs. By interacting with RAGEs, 
AGEs further stimulate signal transduction, leading to the 
production of proinflammatory cytokines like interleukin-6 
(IL-6) which may lead to neuroinflammation [41]. The per-
oxidation end products help in the determination of destruc-
tion caused by FRs. These lead to the generation of malon-
dialdehyde, peroxynitrate, protein carbonyls and many other 
AGEs. These end product levels are measured in the blood 
samples of AD patients which are likely to be increased with 
age. As these products are generated due to peroxidation, 
a destructive mechanism of oxidative stress indicates the 
part of oxidative stress in the progression of AD. Various 
studies show the interlink between increased malondialde-
hyde levels and progression of AD [42]. The formation of 
ROS by RAGE is also mediated by the enzyme nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase (NOX), 
and NOX-dependent ROS is directly linked to hippocampal 
damage and cognitive decline. NOX4 is abundantly present 
in the brain and widely involved in the pathological pro-
gression of AD. The activity of oxidative stress-related pro-
teins such hemeoxygenase-1 (HO-1) can be influenced by 
NOX4 via nuclear erythroid factor 2-related factor 2 (Nrf2). 
When oxidative stress stimulates a cell, Nrf2 migrates to 
the nucleus so that it may associate to antioxidant response 
elements by activating a variety of cytoprotective molecules 
including HO-1. Therefore, attenuating oxidative stress and 
inflammation by inhibiting the AGE/RAGE/NOX4 signaling 
pathway could be an effective therapy for AD [43].

Oxidative stress and Aβ toxicity in AD progression

Zn, Cu and Fe are required for the cognitive functions of 
the brain. But in AD brain, the levels of these metal ions 

have been found to be significantly elevated. Aβ proteins 
are highly susceptible to these metal ions. The exact binding 
mechanism of Zn with Aβ proteins is not well reported, but 
it is believed to bind with imidazole ring of histidine deriva-
tives. Cu and Fe directly bind to Aβ and trigger the synthesis 
of FRs. Cu is considered to be more susceptible to Aβ bind-
ing due to higher redox potential. Cu-Aβ complex under-
goes catalytic reaction and produces hydrogen peroxide and 
hydroxyl radicals by interacting with molecular oxygen [10].

Aβ has been reported to cause lipid peroxidation and pro-
tein oxidation which results in elevated levels of peroxida-
tion products like malondialdehyde and 4-hydroxy-2-none-
nal (HNE) and cause neuronal cell death. It also stimulates 
the intracellular rise in calcium levels. These products bind 
to the proteins like cysteine and render them non-functional. 
Acrolein, another lipid peroxidation product, causes damage 
to the lipid bilayers and leads to neuronal cell damage. Aβ 
induced oxidation of proteins also leads to the formation of 
protein carbonyls which promote the pathogenesis of AD 
[44]. High concentration of FRs also influences the inflam-
matory gene transcription and gives rise to the stimulation 
of interleukins and cytokines. Other inflammatory media-
tors including tumor necrosis factor alpha (TNF-α) and 
chemokines cause inflammation in the neurons. This can 
result in the degeneration of neurons subsequently activat-
ing microglia and astrocytes exacerbating the disease condi-
tion. Both oxidative stress and neuroinflammation cause the 
accretion of amyloid β peptides in the brain causing neuro-
degeneration and progression of AD [45].

Oxidative stress and hyperphosphorylated tau in AD 
progression

Tau protein is crucial for the stabilization of microtubules 
and facilitate smooth neuronal transduction processes. Sev-
eral studies have proven that oxidative stress is intricated in 
increasing the hyperphosphorylation of these tau proteins. 
Carbonyl-4-HNE, a peroxidation end product, is responsible 
for the accumulation of hyperphosphorylated tau. But the 
relation between tau hyperphosphorylation and oxidative 
stress is still unclear. In some animal studies, treatment with 
oxidative stress inducing compounds led to the overactivity 
of glycogen synthase kinase 3β (GSK3β). It is a Ser/Thr 
kinase that causes hyperphosphorylation of tau protein pro-
moting the pathology of the disease. Apart from GSK-3β, 
oxidative stress also modulates other kinases and promotes 
hyperphosphorylation of tau proteins. Some other studies 
have shown that there is oxidative stress induced reduction 
of peptidyl prolyl cis-trans isomerase 1 (Pin1) in AD brains. 
This enzyme is involved in the dephosphorylation of tau 
protein [46]. Oxidative stress leads to the decrease in glu-
tathione and buthionine sulfoximine resulting in increased 
hyperphosphorylation of tau protein. Oxidative stress can 
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also directly cause hyperphosphorylation of tau by modu-
lating protein phosphatase 2 A (PP2A). GSK3β activity is 
enhanced in oxidative stress conditions and PP2A activity 
is hindered which subsequently leads to the stimulation of 
extracellular signal regulated kinase 1/2 (ERK1/2) pathway 
and cause apoptosis. Further studies need to be performed 
for better understanding of the involvement of oxidative 
stress in tau pathologies [47].

Oxidative stress and mitochondrial dysfunction 
in AD progression

Mitochondrial dysfunction is getting immense focus due to 
their role in neurodegenerative disorders including AD. It is 
well known that mitochondrial dysfunction leads to massive 
energy loss in the neurons which may hinder their normal 
physiological functions including neurotransmission, synap-
tic plasticity and membrane excitability. Accumulating evi-
dences have suggested the role of mitochondrial dysfunction 
in the production of ROS and exhibiting oxidative stress 
condition [48]. It has been reported that mitochondria gen-
erated ROS trigger tau hyperphosphorylation and its aggre-
gation. This was proven by a study in mice, in which mito-
chondria targeted anti-oxidant, mito-TEMPO, suppressed the 
accumulation of hyperphosphorylated tau by reducing ROS 
generation from mitochondria. This suggests the involve-
ment of mitochondrial ROS in the pathogenesis of AD 
mediated by hyperphosphorylated tau accumulation [49]. 
In addition, mitochondria mediated glucose hypometabolism 
is also a major concern associated with the progression of 
AD. As glucose is the key source of energy for the function-
ing of brain, alteration in cerebral glucose metabolism is 
the trigger for AD progression. IRS (Insulin receptor sub-
strate)/PI3k/Akt pathway is responsible for regulating gene 
expression related to lipid metabolism, gluconeogenesis 
and stress resistance via forkhead box transcription factors 
(FOXO) transcription factors. But under insulin resistance 
condition FOXO is hyperactivated which stimulates heme 
oxygenase 1 (HMOX1) rendering it to consume heme. This 
disturbs electron transport chain (ETC) [50] as heme are 
embedded in the proteins of ETC [51]. Further, it leads to 
abrupt production of ROS from mitochondria causing oxida-
tive stress, mutations in mitochondrial DNA and apoptosis 
resulting in neurodegeneration. Evidences have suggested 
that Kreb’s cycle and oxidative phosphorylation are altered 
in AD which eventually leads to glucose hypometabolism 
and oxidative stress [50]. Further, it has been observed that 
there is build-up of oxidative stress, damaging mitochondrial 
DNA (mtDNA) which keeps on increasing with age. Due to 
lack of protective histones and impaired repair mechanism, 
mtDNA are more vulnerable to ROS induced mutilations. 
Oxidative stress condition also alters the levels of nuclear 
proteins like Nup93 which hinders the nucleocytoplasmic 

transmission. In addition, the oxidative phosphorylation 
enzymes are compromised due to ROS induced damage 
which eventually leads to ATP depletion in AD. Studies have 
suggested that the glycolysis enzymes hexokinase and lactate 
dehydrogenase are expressed in AD cortical regions. This 
indicates the shift towards anaerobic respiration to compen-
sate ATP depletion by aerobic respiration [52]. Therefore, 
mitochondrial dysfunction associated oxidative stress may 
result in decreased ATP synthesis, increased calcium release 
from the stores and opening of mitochondrial permeability 
pores. Dysregulated calcium influx can cause various signal 
transduction anomalies which can cause neuronal synapse 
loss and ultimately neurodegeneration [16]. Thus, dysfunc-
tional mitochondria induced oxidative stress leads to the 
progression of AD by increasing oxidative stress (Fig. 3).

Oxidative stress and gut microbiota in AD 
progression

Gut eubiosis, nutrition, and physiology are all influenced by 
gut microbiota (GM). Additionally, they control immuno-
logical responses, oxidative stress, inflammation, and central 
and peripheral neurotransmission. The pathology of neuro-
logical conditions including AD, can be attributed to aging 
and poor lifestyle choices. It is also influenced by oxidative 
and inflammatory reactions brought on by gut dysbiosis 
[53]. Initially the crosstalk between intestinal microbiota and 
brain was elucidated by Elie Metchnikoff and colleagues in 
1900s. There are four ways by which gut microbiota interacts 
with brain. That includes activation of vagal neurons, sero-
tonin released by enterochromaffin cells, systemic cytokines 
and chemokines and direct transfer of chemical signals by 
fermentation of dietary fibers like short chain fatty acids 
(SCFAs) [54]. Gut microbiota is involved in the regulation 
of microglial activation. It was observed in a study that gut 
microbiota stimulated oxidative stress condition via accu-
mulation of N6-carboxymethyllysine (CML) which leads to 
the generation of reactive oxygen species. It also resulted 
in the reduction of brain ATP levels and altered mitochon-
drial functions. It was proven by the study that upon removal 
of gut microbiota the oxidative stress and mitochondrial 
dysfunction in rat was ameliorated. It suggests the patho-
genic link between gut-microbiota and oxidative stress 
[55]. Through leaky gut, pro-inflammatory cytokines and 
bacterial byproducts (TMAO, SCFA, amyloids, LPS, and 
peptidoglycans) may penetrate the bloodstream, approach 
the brain and result in cognitive decline promoting AD. In 
addition, they might stimulate glial cells that cause the pro-
duction of neurotoxic Aβ plaques and neuroinflammation. 
Further, this may lead to degeneration of neurons as well as 
disruption of the connections between Aβ1-40 and Aβ1-42 
peptides along with tau hyperphosphorylation [53].
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Oxidative stress induced signaling pathways 
involved in the pathogenesis of AD

Various molecular pathways including RCAN, CREB, Nrf2 
and PP2A have been reported to be implicated in the pro-
gression of AD induced by oxidative stress. These signaling 
pathways get altered under stress condition and activate or 
inhibit downstream pathways leading to AD progression. 
Thus, modulating these pathways can be a major target for 
therapeutic development of AD (Fig. 2).

Regulator of calcineurin (RCAN1) signaling pathway 
and AD progression

Calcineurin is involved in many facets of synaptic plasticity 
and memory formation. This is due to its ability to directly 
dephosphorylate critical targets in both the presynaptic and 
postsynaptic compartments of neurons. Regulator of cal-
cineurin (RCAN1) is upregulated in Alzheimer’s disease. 
Increased RCAN1 level is also associated with increased 
activity of GSK3β [19]. It is well reported that overexpres-
sion of RCAN1 increases the susceptibility of neurons 

towards oxidative stress. As mitochondria plays a crucial 
role in oxidative stress regulation, RCAN1 is involved in 
the normal functioning of mitochondria [56]. The transition 
of short-term memory to long-term memory is mediated 
by long-lasting alterations in synaptic plasticity, which are 
dependent on CREB signaling [21]. CREB promotes the 
proteasomal degradation of RCAN1 which is overexpressed 
in AD brains [20]. Elevated oxidative stress levels are linked 
with decreased CREB activation [21]. Calcineurin regu-
lated by RCAN1 is a calcium dependent serine/threonine 
phosphatase which stimulates the transcription of various 
genes promoted by dephosphorylation of nuclear factor of 
activated T-cells (NFAT) and its transfer into the nucleus. 
NFAT then contributes in proliferation of cells, apoptosis, 
synaptic plasticity maintenance, angiogenesis and muscle 
development. Based on its phosphorylation levels, RCAN-1 
exhibits the regulation of calcineurin. It has been justified 
by in-vitro studies where high RCAN-1 levels were respon-
sible for inhibition of calcineurin and low levels account 
for increased expression of calcineurin. Dysregulation of 
calcineurin has frequently been observed in AD patients 
[57–60]. This dysregulation is as a result of upregulation of 

Fig. 3  Mitochondrial involvement in oxidative stress induced Alzhei-
mer’s disease. The figure shows various pathways which lead to the 
progression of AD. The leakage of electron from the electron trans-
port chain during cellular respiration is the major cause of produc-
tion of ROS which further damages the neurons and progress AD. 
Further insulin resistance disrupts the electron transport chain via 

FOXO/HMOX1 pathway contributing to oxidative stress. Due to ROS 
induced mitochondrial DNA damage, there occurs further increase 
in the disease condition as a result of alteration of mitochondrial 
functions including production of energy for various brain functions 
resulting in neurodegeneration and cognitive decline
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RCAN-1 which occurs due to increased glucocorticoid lev-
els, ApoE4 allele, ischemic stroke and elevated NF-κB [61]. 
In a study on SHSY5Y cells, RCAN1 expression for a short 
period inhibited apoptosis via inhibition of oxidative stress 
mediated caspase-3 activation. But when the exposure time 
was increased the effect was reversed and caspase-3 was 
activated under oxidative stress [62]. RCAN1 promotes neu-
rodegeneration via inhibition of calcineurin and increased 
expression of GSK3-β. It stimulates the formation of neu-
rofibrillary tangles and neuronal apoptosis [63].

Cyclic AMP response element binding protein (CREB) 
signaling pathway and AD progression

Pro-survival protein, CREB is regulated by AMPK family 
member proteins. As a transcription factor, the CREB pro-
tein controls the expression of genes that are important for 
the survival, differentiation, and growth of neurites. It has 
been demonstrated that a number of kinases, including pro-
tein kinase A (PKA), protein kinase C, calmodulin kinases, 
pp90 ribosomal S6 kinase and mitogen-activated protein 
kinase/extracellular signal-regulated kinase (MAPK/ERK) 
facilitate the phosphorylation of CREB at its transcriptional 
activation location [64]. In a study on PC12 cells the ERK/
CREB signaling was observed to be modulated under oxi-
dative stress. Increased levels of  H2O2 elevate phosphoryla-
tion of ERK1/2 and reduce phosphorylation of CREB. Some 
studies have also shown that oxidative stress is inhibited by 
CREB/Erk pathway also CREB activation mitigates apopto-
sis mediated by oxidative stress [65]. The ERK/MAPK path-
way consequently modulates other downstream pathways to 
regulate gene transcription for maintaining synaptic plastic-
ity and alleviating oxidative stress. ERK/CREB signaling is 
linked to brain-derived neurotrophic factor (BDNF) which 
is involved in the regulation of cognitive functions and neu-
ronal plasticity and contributes in the management of AD 
[66]. Many drugs are targeted towards CREB for the treat-
ment of oxidative stress condition and the related disorders 
including AD [67] which are enlisted in Table 2.

Nuclear factor erythroid 2‑related factor 2 (Nrf2) 
signaling pathway and AD progression

Growing number of studies indicate the involvement of Nrf2 
in the oxidative stress mediated pathology of AD. Oxida-
tive stress and persistent neuroinflammation in AD patients 
may be reduced by activating the Nrf2/HO-1 pathway and 
associated antioxidant molecules. NAD(P)H dehydrogenase 
quinone 1 (NQO1), heme oxygenase 1 (HO-1), and other 
antioxidant enzymes are expressed more frequently when 
Nrf2 is activated. These activities enhance ATP genera-
tion and mitochondrial activity, as well as prevent against 
oxidative damage. Nrf2 plays a crucial role in regulating 

the biogenesis, mitophagy and dynamics of mitochondria. 
Nrf2 activity declines with age in rats resulting in decreased 
glutathione production. This indicates that the expression 
of Nrf2/ARE pathway is decreased with age [22]. Under 
physiological condition, kelch-like ECH associated protein 
1 (Keap1), which is known to inhibit Nrf2, clusters with 
Nrf2 [68]. Physiologically, Nrf2 must first be activated by 
ROS before it can be dissociated from the Keap1-CuI-Rbx1 
complex and translocated into the nucleus [69]. Heme oxy-
genase-1 (HO-1) is one endogenic oxidoreductase whose 
expression is further regulated by Nrf2 after it binds to anti-
oxidant response elements (AREs) in the nucleus [70]. A 
study on transgenic AD mice with Aβ accumulation and 
cognitive deficits suggested that with the increased AD 
pathology the activity of Nrf2 was declined consequently 
altering the expression of HO-1. By means of a GSK-3β 
and TrCP-β dependent Cul1-based ubiquitin ligase, Nrf2 
undergoes degradation. Ser334–338 of the Nrf2 protein 
are phosphorylated by GSK-3β, forming a disintegration 
region that is recognized by β-TrCP and marked for enzy-
matic digestion by the Cullin 1 (Cul1) and Rbx1 complex 
[71–73]. Through the phosphorylation of the Fyn protein, 
which is brought on by GSK-3β, Nrf2 controls its function 
during oxidative stress environments like those in AD. The 
nuclear transfer, ubiquitination, and degradation of Nrf2 are 
caused by phosphorylated Fyn protein [22]. Nuclear Nrf2 
levels in the hippocampus of AD human brains are found 
to be decreased. In spite of oxidative stress, Nrf2-mediated 
transcription is not enhanced in AD patients. Histochemi-
cal investigations show that Nrf2 is mostly localized in the 
cytoplasm of hippocampus neurons during the disease [74]. 
The Keap1-Nrf2 expression acts as biomarker for the sever-
ity of oxidative stress. Keap1-Nrf2 is linked to ageing and 
regulate the transcription of several antioxidant enzymes. 
A complicated regulatory system, comprising phospho-
inositide 3-kinase (PI3K)/protein kinase B (Akt), protein 
kinase C, and mitogen-activated protein kinase (MAPK), is 
also involved in Keap1-Nrf2 signaling [75]. Targeting this 
pathway may be therapeutically beneficial in AD.

Protein phosphatase 2 A (PP2A) signaling pathway 
and AD progression

The protein phosphatases (PPs) are highly conserved 
between species and regulate a variety of cellular functions 
in eukaryotic cells, including cell division, differentiation, 
apoptosis, gene regulation, and cellular metabolism [76]. 
Different opinions exist regarding how ROS affects PP2A 
[77]. PP2A is inhibited in the presence of ROS and activates 
GSK-3β. Thus, it increases tau hyperphosphorylation due 
to activated GSK3β in AD [13]. Additionally, phosphatase 
is essential for regulation of oxidative stress and inflam-
mation. Reactive oxygen species have been demonstrated 
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Table 2  Therapeutic agents under clinical trial targeting oxidative stress for the treatment of AD

S.No. Drug Structure Molecular mechanism 
of action

Route of 
administra-
tion

NCT No. References

1) Carvedilol Activation of Nrf2/
ARE pathway

Oral NCT01354444 [89]

2) Donepezil AMPK activation Oral NCT00000173 [92]

3) Memantine Activation of Nrf2 and 
BDNF/TrkB pathway

Oral NCT00235716 [94, 95]

4) Melatonin Activation of Nrf2/
HO-1 pathway

Oral NCT00000171 [97]

5) Pramipexole Modulates CREB/
RCAN1 signaling; 
Activation of Nrf2/
HO-1 pathway

Oral NCT01388478 [100, 101]

6) Resveratrol Activation of PP2A; 
AMPK/PI3K/Akt 
inhibition

Oral NCT01504854 [103, 104]

7) Etanercept TNF-α inhibitor; 
Increase the levels 
of anti-oxidants and 
decrease ROS genera-
tion

S.C. NCT01716637 [106, 109]



Molecular Biology Reports           (2024) 51:48  

1 3

Page 11 of 18    48 

to inactivate PP2A, which activates NFκB-mediated pro-
inflammatory signaling. The dissociation of the highly func-
tional PP2A holoenzyme trimer to a less functional dimeric 
form is caused by oxidative stress [23]. Memory impairment 
and tau hyperphosphorylation are the major hallmarks of 
AD. Rats with impaired memory were subjected to OKA-
induced PP2A inhibition, which resulted in tau hyperphos-
phorylation. It has been demonstrated by in-vitro and in-
vivo studies that oxidative stress-induced deactivation of 
PP1/PP2A is responsible for tau hyperphosphorylation and 
extended ERK 1/2 phosphorylation. Therefore, it is intrigu-
ing to hypothesize that increased ERK1/2 activity, which 
leads to tau hyperphosphorylation and the development 
of neurofibrillary tangles, is caused by oxidative stress-
mediated PP1 and PP2A suppression in AD. Additionally, a 
reduction in PP2A activity contributes to aberrant tau hyper-
phosphorylation in AD brain by decreasing its dephospho-
rylation, activating ERK1/2, MEK1/2, and p70 S6 kinase 
[78]. Thus, PP2A stimulation has been suggested as a poten-
tial therapeutic target for alleviating oxidative stress.

Recent development in potential therapeutics 
for AD targeting oxidative stress

Current FDA approved drugs for the treatment of Alzhei-
mer’s disease include galantamine, donepezil, memantine, 
rivastigmine and a combination of donepezil and memantine 
known as Namzaric. However, they provide only sympto-
matic relief without inhibiting the progression or changing 
the outcomes of the disease. Tacrine was the first drug to 
be approved for the treatment of the disease but later it was 
withdrawn due to hepatotoxicity [79]. Acetylcholinesterase 
inhibitors are beneficial in almost all stages of dementia but 
their role in mild cognitive dysfunction and prodromal AD 
is still not proved. Memantine is effective in moderate to 

severe forms of the disease and is not efficient in ameliorat-
ing cognitive decline [80]. Recently, anti-amyloid-β anti-
bodies, aducanumab, lecanemab and gantenerumab are in 
focus for the treatment of AD. These are monoclonal IgG1 
antibodies targeting aggregated forms of Aβ. Growing evi-
dence from clinical trials suggest the beneficial role of Aβ 
immunotherapy in ameliorating AD condition [81]. Devel-
oping therapeutics involve naturally occurring polyphenolic 
compounds that act as antioxidants and play a neuroprotec-
tive role in AD. Polyphenolic compounds either reduce the 
production of reactive oxygen species or enhance the release 
of antioxidants. They are able to cross the blood brain barrier 
(BBB) and promote neuroprotection [29]. α-lipoic acid is 
one of the polyphenolic compounds which acts as free radi-
cal scavenger and reduces hydrogen peroxide or iron induced 
pathologies by inhibiting ferroptosis. It reduces the level 
of iron required for the conversion of hydrogen peroxide 
into hydroxyl radicals via Fenton reaction by forming che-
lates with iron. It also reduces calcium content in the brain 
and activity of calpain preventing neuronal cell death [82]. 
Polyphenols have beneficial properties and a wide range of 
biological activities against a number of human diseases, 
including type 2 diabetes mellitus, cancer, cardio-metabolic 
diseases, and neurodegenerative diseases including AD and 
potentially modulate gut dysbiosis [83]. Green tea polyphe-
nols, which are abundant in (-)-epigallocatechin-3-gallate 
(EGCG), scavenge free radicals, chelate metal ions, and 
block the nuclear transfer of NF-кB. As a result, they alle-
viate oxidative stress and protect against a number of the 
AD promoters [84]. Reactive oxygen species have also been 
found to disrupt BBB by triggering a variety of signaling 
pathways leading to tight junction activation, adherent junc-
tion modification, mitochondrial membrane pore activation 
and cytoskeletal disorganization. This results in BBB dys-
function and further stimulates other pathological conditions 

Table 2  (continued)

S.No. Drug Structure Molecular mechanism 
of action

Route of 
administra-
tion

NCT No. References

8) Epigallocatechin 
gallate

Activation of Nrf2/
ARE and Nrf2/Keap1 
pathway

Oral NCT03978052 [111]

9) Genistein Activation of CREB 
pathway and PI3K/
Akt/Nrf2/Keap1 
pathway

S.C. NCT01982578 [115]
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including neuroinflammation progressing to AD. Naturally 
occurring polyphenols include stilbenes, flavanones, isofla-
vones and phenolic acids. These act as anti-oxidants alleviat-
ing the BBB dysfunction associated with increased oxidative 
stress [85]. Thus, polyphenols are considered to be potential 
therapeutic molecules for the treatment of oxidative stress 
induced AD.

In addition, targeting mitochondria for decreasing the 
production of FRs is a major pathway ameliorating oxida-
tive stress induced AD. Anti-oxidants like coenzyme Q10, 
MitoQ, dimebon and α-lipoic acid are potent in alleviat-
ing mitochondrial dysfunction and associated oxidative 
damage (Fig. 4). They reduce cognitive decline associated 
with AD patients [86]. ROS activate protein kinase C and 
MAPK pathway and trigger inflammatory cytokines and 
chemokines. The inflammatory cells lead to the synthesis 
of FRs that further stimulates other inflammatory mediators. 
Therefore, anti-inflammatory drugs can be used to reduce 

the oxidative stress induced damage and prevent neurode-
generation [31]. TNF-α is a major stimulator of cytokines 
and various other inflammatory mediators and lead to the 
abnormal cleavage of APP. TNF-α is also a stimulator of 
NFκB pathway which leads to production of Aβ. Inhibiting 
TNF-α in AD patients have been found to mitigate cognitive 
defects [87]. TNF-α inhibitor like etanercept can be used 
to reduce TNF-α induced damage to the neurons (Table 2) 
(Fig. 4). Drugs undergoing clinical trials targeting oxidative 
stress induced AD are described herein.

Carvedilol

Carvedilol is under phase IV of the clinical trials. 29 par-
ticipants have been enrolled in the trial. This study has a 
randomized, triple-blind and parallel assignment design. 
Carvedilol is a β-blocker and it inhibits apoptosis, reduces 
ROS level and toxicity caused by Aβ. It regulates IL-1β 

Fig. 4  Therapeutic implications to combat oxidative stress in AD. 
Figure shows that the antioxidants like Vitamin E, Mito Q, curcumin, 
etc. reduce the generation of FRs from various sources and along 
with the reduction in the generation of FRs antioxidant system is 
also stimulated with the help of various drugs preventing the damage 
induced by oxidative stress conditions. Further drugs like pramipex-

ole, memantine, melatonin and carvedilol promote activation of Nrf2/
HO-1 pathway and epigallocatechin gallate and genistein activate 
Nrf2/ARE and Keap1 pathway respectively. Donepezil and resvera-
trol can be seen activating AMP activated protein kinase (AMPK) 
pathway. These all ultimately lead to the attenuation of oxidative 
stress condition and ameliorate AD pathogenesis
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expression which is implicated in reducing neurogenesis 
thus promotes neuronal growth and survival [88]. Carve-
dilol activates the Nrf2/ARE pathway and increases the 
levels of heme oxygenase-1(HO-1) and NAD(P)H quinone 
oxidoreductase-1(NQO-1) in HT22 cells alleviating oxida-
tive stress [89].

Donepezil

Donepezil is in phase III for evaluating its therapeutic poten-
tial by diagnosing cognitive functions in AD patients. The 
study has a double-blind, randomized, and parallel assign-
ment design. In murine macrophages cell line RAW 264.7, 
it was seen that donepezil suppresses NF κB. Similarly, in 
cuprizone induced mouse model donepezil was found to 
promote remyelination of neurons [90]. It is a piperidine 
derivative which reversibly inhibits acetylcholinesterase 
enzyme which is responsible for hydrolysis of acetylcholine. 
Thus, it also improves cholinergic transmission in neurons 
by increasing acetylcholine levels [91]. Donepezil has also 
been found to activate AMPK and modulate other down-
stream pathways to mitigate oxidative stress conditions [92].

Memantine

Memantine is in phase III clinical trials to determine the 
effectiveness and safety for the management of Alzhei-
mer’s disease. Randomized quadruple masking and facto-
rial assignment make up the study design. There are 613 
participants altogether enrolled for the study. Memantine 
blocks NMDA, a glutamate receptors sub-family, which 
has very important role in the functioning of brain [93]. 
Recently, memantine has been shown to mitigate oxidative 
stress condition via activation of BDNF/TrkB signaling in 
human umbilical vascular endothelial cells (HUVECs) [94]. 
It has also been reported that memantine reduces oxidative 
stress directly or indirectly via activation of Nrf2 pathway 
in SHSY5Y cells [95].

Melatonin

Melatonin is in phase III clinical trial with the objective of 
treatment of AD. Melatonin is a pineal hormone and is an 
inhibitor of β and γ secretase enzymes and increases the 
activity of α secretase thus reducing amyloidogenesis. If 
AD is detected in early stages melatonin is highly efficient 
drug inducing neuroprotection [96]. It has been reported 
to directly scavenge ROS along with activation of Nrf2/
HO-1 pathway and attenuating oxidative stress. The levels 
of antioxidants including catalase, superoxide dismutase 
and glutathione peroxidase were found to be elevated upon 
melatonin treatment [97].

Pramipexole

Pramipexole is in phase II study for evaluating the effec-
tiveness and safety in Alzheimer’s disease patients. The 
design of the study is open label with single group assign-
ment model. Actual enrollment is of 20 participants. Pre-
clinical studies in APPswe/PS1dE9 mice models showed 
that pramipexole, a dopamine agonist has a potent neuro-
protective role as it prevents neurodegeneration [98]. It 
is a dopamine agonist which functions as a free radical 
scavenger that mitigates oxidative stress in the mitochon-
dria and prevents its dysfunction exhibiting neuroprotec-
tive effect [99]. Pramipexole acts via attenuating oxida-
tive stress condition by activating Nrf2/HO-1 pathway and 
treatment with it elevated IL10 generation and improved 
cognitive functions in rats [100]. It also activates CREB 
pathway and subsequently reduces over-expressed RCAN1 
levels [101].

Resveratrol

Resveratrol is in phase II clinical trials to determine the 
effectiveness of resveratrol supplement in the prevention 
of Alzheimer’s disease progression. The study design is 
randomized and single centered. It is a study with quadru-
ple masking and parallel group assignment model. Actual 
enrollment is of 119 participants. Preclinical studies were 
conducted in Tg19959 transgenic AD mice model and APP/
PS1 transgenic mice model which resulted in reduced tau 
pathology by increasing the activity of AMPK and reduced 
oxidative stress [102]. Resveratrol further inhibits the phos-
phoinositide-3 kinase (PI3K)/AKT pathway and promotes 
neuronal survival [103]. It also stimulates PP2A activation 
and promotes tau dephosphorylation [104].

Etanercept

This study design is open label with crossover assignment 
model and randomized allocation. The study is in Phase I 
of clinical trials for effectiveness and safety measurements 
of etanercept in AD patients. 12 participants are enrolled 
for this study. Studies in AD mouse model have shown that 
there is decreased level of TNF-α in brain. TNF-α is respon-
sible for the production of ROS via NADPH oxidase. Upon 
administration of etanercept cognitive function was found 
to be improved [105, 106]. It is an anti-TNF-α drug efficient 
in reducing cognitive defects in AD patients [107, 108]. It 
was found to reduce oxidative stress, suggested by decreased 
malondialdehyde level and increased anti-oxidants level 
including superoxide dismutase and glutathione peroxidase 
[109].
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Epigallocatechin‑gallate (EGCG)

The goal of the study is to assess beneficial effects of EGCG 
in the early stages of Alzheimer’s disease. There are 200 
people enrolled in the trial, which has a randomized, dou-
ble-blind, and crossover assignment design. EGCG attaches 
to FRs and neutralizes them because it contains hydroxyl 
groups. It also modulates the pro-apoptotic proteins Bax and 
Bad and regulates mitochondrial permeability [110]. EGCG 
was found to activate Nrf2/ARE and modulate Nrf2/KEAP1 
signaling pathway alleviating oxidative stress resulting in 
neuroprotection [111].

Genistein

The study has randomized, parallel assignment, quadruple 
masking study design. There are 27 people enrolled in the 
study. Experiments on streptozotocin induced rat models 
showed that genistein induces autophagy and promotes Aβ 
clearance [112]. Genistein hinders the activity of kinases 
including cAMP-dependent protein kinase, protein kinase 
C and phosphorylase kinase [113]. Genistein promotes 
neuronal cell survival by attenuating oxidative stress via 
activation of PI3K/Akt/Nrf2/Keap1 pathway and decreased 
malondialdehyde and lactate dehydrogenase levels [114]. 
The cAMP/CREB-BDNF-TrkB signaling pathway was acti-
vated by the effective upregulation of cAMP levels and the 
phosphorylation of CREB and TrkB upon genistein treat-
ment. It is also a potent regulator of PI3K/Akt signaling 
[115].

Conclusion

Alzheimer’s disease is a highly progressive neurodegenera-
tive disorder affecting the memory and cognitive functions. 
Existing drugs only target the symptoms and are involved in 
improving the longevity of life of the AD patients. Due to 
lack of proper evidences for the cause of the disease com-
plete cure is still on the way. Recent findings have shown 
that oxidative stress has major role in the pathogenesis of the 
disease. Oxidative stress via different mechanisms damages 
the neurons and alters the signal transduction process con-
tributing to AD. Peroxidation of lipids present in the brain, 
cross-linking of various proteins and damage to the nucleic 
acids cause neuronal cell death. Dysregulation of signaling 
pathways like Nrf2, PP2A, RCAN1 and CREB are involved in 
the disease progression. Natural antioxidants like polyphenolic 
compounds either reduce the generation of reactive oxygen 
species or enhance the release of antioxidants, thus prevent 
oxidative stress induced damage. Potent anti-oxidants are 
Vitamin E, Curcumin, α lipoic acid, Mito Q, Coenzyme Q10 
and epigallocatechin gallate. α-lipoic acid acts as free radical 

scavenger and reduce hydrogen peroxide or iron induced 
pathologies of AD by inhibiting ferroptosis. Ferroptosis leads 
to cell death by stimulating lipid peroxides in the presence of 
iron. Mitochondrial respiratory chain is also a major producer 
of FRs due to dysfunction of mitochondria. Therefore, drugs 
like Mito Q target mitochondria for reduction of free radical 
generation. TNF α is major stimulator of cytokines and vari-
ous other inflammatory mediators resulting in abnormal cleav-
age of APP. Along with this, it also stimulates the production 
of ROS via NADPH oxidase dependent pathway. Drugs like 
etanercept inhibit TNF-α activity and reduce oxidative stress 
and elevate the levels of antioxidants. Various drugs directly or 
indirectly contributing in the reduction of oxidative stress are 
under various phases of clinical trials. Pramipexole, meman-
tine, carvedilol and melatonin target Nrf2/HO-1 pathway. 
Pramipexole also reduces the overexpression of RCAN1 and 
attenuates oxidative stress. Further, epigallocatechin gallate 
and genistein activate NRF2/ARE/Keap1 and modulate CREB 
signaling contributing in the management of oxidative stress. 
Donepezil and resveratrol have been found to activate AMPK 
pathway promoting neuronal growth and survival. Thus, tar-
geting oxidative stress is the major choice for developing thera-
peutics against Alzheimer’s disease.
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