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At the point of care, artificial intelligence (AI) algorithms have
been developed to augment diagnostic decisions and suggest
appropriate care pathways,1 by leveraging complex informa-
tion in a patient’s electronic health record, such as imaging,

documentation, and diagnos-
tic testing. With an increas-
ing number of technologies

integrated into the diagnosis, management, and even treat-
ment of patients,2 the promise of AI to enhance accuracy, re-
duce errors, reduce clinician burnout, and improve clinical
workflows may appear imminent.3

MostAIalgorithmsaredesignedtobeassistivetechnologies—
augmenting, not replacing, clinicians’ decision-making.4 AI
models are imperfect and lack the broader clinical context
that may be relevant for patient care. The expectation is that
the diagnostic performance of clinicians supported by AI
will exceed those of clinicians without such support.

In practice, however, clinicians are challenged by how
to best interpret the information they receive from AI tools.
Novel AI technologies are “black boxes” and clinicians may
be unsure of whether or when to make a decision that runs
counter to a recommendation based on the AI algorithm
providing assistance. To address this, model developers
have begun adding a layer of explainability so that clinicians
can better interpret the model predictions and understand
when models are relying on heuristics rather than clinically
relevant data elements.5 These heuristics can bias AI model
predictions and may be the result of development in selec-
tive, nonrepresentative populations,6 inadequate adherence
to development best practices, and limited validation.
The US Food and Drug Administration (FDA) has called
for explainability of model outputs in its draft guidance
addressing AI technologies for clinical decision support.7

In this issue of JAMA, Jabbour et al8 evaluate the impact
of explainability for AI model output on clinician diagnosis
and further examine how systematically biased models may
affect patient care supported by AI-based assistive diagnos-
tic aids. In total, 457 clinicians from 14 US states were asked
to respond to a respiratory distress–related clinical vignette
and rate the probability of 3 possible diagnoses: chronic
obstructive pulmonary disease, pneumonia, or heart failure.
Each clinician’s diagnostic performance was assessed over 9
vignettes: 2 baseline vignettes without AI support, 6 for
which clinicians received AI support for interpretation of
the chest radiograph, either with or without explainability
metrics accompanying this interpretation, and 1 final
vignette with support from an “expert clinician” consult.
For the 2 baseline vignettes without AI support, diagnostic

accuracy was 73%, whereas diagnostic accuracy for the final
vignette was 81%, establishing the lower and upper bounds
of average diagnostic accuracy for these vignettes.

In addition to testing the impact of explainability, this study
also examined the impact of systematic bias. Among the 6 AI-
supported vignettes, 3 reported predictive outputs from a stan-
dard model with a known accuracy of 75%, whereas the other
3 reported predictive outputs from a biased model that sys-
tematically ascribed a higher diagnostic probability for pneu-
monia based on advanced age and for heart failure based on
high body mass index.

The results from Jabbour et al suggest that a more careful
approach to evaluating AI tools is warranted before their
rapid adoption, even when AI is used as assistive technology.
For vignettes with AI support using the standard model, cli-
nicians' diagnostic accuracy increased only modestly, from
73% without AI support to 76%. For vignettes with AI sup-
port using the standard model paired with explainability
heatmaps highlighting the predictive areas on chest radio-
graphs, diagnostic accuracy improved slightly more to 78%.
However, for vignettes with AI support using the systemati-
cally biased model, clinicians’ diagnostic accuracy dropped
substantially to 62%. This large drop in performance was not
remedied by explainability heatmaps that demonstrated
inappropriate clinical sources for the predictions (ie, informa-
tion from bones and soft tissues on the radiographic image,
instead of lungs or heart). Even with this layer of explainabil-
ity, clinician diagnostics accuracy only improved slightly
(64%) and remained much lower than accuracy without any
AI support.

These findings are concerning. Although the study
highlights the potential value of explainability metrics to
accompany assistive AI-based diagnostic tools, it also
clearly illustrates the major challenge of clinicians’ relying
on assistive technologies, often referred to as automation
bias.9 Even in controlled settings, without the usual pres-
sures on time, clinicians favored automated decision-
making systems, relying on the AI-based tool, despite the
presence of contradictory or clinically nonsensical informa-
tion. If a model performs well for certain patients or in cer-
tain care scenarios, such automation bias may result in
patient benefit in those settings. However, in other settings
where the model is inaccurate—either systematically biased
or due to imperfect performance—patients may be harmed
as clinicians defer to the AI model over their own judgment.
Worryingly, errors resulting from automation bias are likely
to be further compounded by the usual time pressures faced
by many clinicians.
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For AI-based assistive technology developers, the study
of Jabbour and colleagues illustrates the harm that may
result from health system adoption of biased models. Hav-
ing a “clinician-in-the-loop” overseeing the AI does not
overcome the challenges of AI systems failing to provide
accurate information, regardless of whether the source of
the predictions is highlighted for clinicians. Therefore, the
bar for clinical decision support using novel technology
needs to reflect the challenges likely to be encountered in
clinical practice.10

The study demonstrates that offering explainability met-
rics for predictions to clinicians, expecting they will then
weigh that information before making a decision, may be
ineffective. The limited value of explainability metrics in this
study may reflect both the nature of explainability strategies
used (ie, heatmaps) and that clinicians do not have the requi-
site training in evaluating these measures. As AI-based assis-
tive technology is embedded in care systems, clinicians will
need training on the interpretation of technology outputs,
how to evaluate the quality of the provided information
using available measures of explainability, and how to infer
the common sources of bias, including derivation of data
from nonrepresentative populations.

The study also forecasts broader challenges with emerg-
ing AI technology in more complex clinical scenarios. This
study focuses only on clinical diagnosis using a radiographic
image, which clinicians are routinely trained to read and
interpret for respiratory distress. However, as care algorithms
evolve to infer information not directly apparent to clinicians
and rely on the ability of AI to identify complex hidden
signatures,11,12 there is a critical need for methodological
innovation and clinician training that goes beyond explain-
ability and provides true interpretability—where clinicians
can infer the factors that resulted in the information.13 In

these settings, heatmaps are woefully inadequate because
they are designed to simply make visible model heuristics (ie,
shortcuts in making the predictions and whether predictions
were based on information relevant to the clinic al
condition).14

The work of Jabbour and colleagues should inform the FDA
as it evaluates and authorizes the use of a growing number of
AI-based diagnostic tools. The current regulatory evaluation
by the FDA is focused on model performance characteristics
and its stability across different development and validation
populations. Although this approach may ensure consis-
tency of the model’s performance across diverse popula-
tions, it does not fully capture the potential downstream nega-
tive consequences resulting from algorithmic assisted care. As
clinicians react to information available from algorithms to de-
cide on care pathways, all biases that are inherent in the model
are further propagated and amplified.15 To safeguard pa-
tients from unintended harm, evaluations of how clinicians in-
teract with the model output, which downstream care deci-
sions hinge on the algorithm and biases that arise with intended
and unintended uses, are needed.

Clinical decision support tools based on imperfect AI
assistive technologies have the potential to result in patient
harm because clinicians may trust the output of AI tools over
their own judgment. The bar for AI developers and regulatory
agencies to put a product into clinical use must, therefore, be
high. The task of interpreting the outputs of AI models can-
not be off-loaded to clinicians, especially during a deluge of
AI-driven tools that lack adequate controls, and better strate-
gies are needed to go beyond explainability and to enable
true interpretability. The future of AI-supported care is rap-
idly approaching, but the primary goal of implementing these
tools—to improve patient care—must not be forgotten in the
excitement over the technology.
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