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Abstract
Purpose  To construct and validate a nomogram model that integrated deep learning radiomic features based on multipara-
metric MRI and clinical features for risk stratification of meniscus injury.
Methods  A total of 167 knee MR images were collected from two institutions. All patients were classified into two groups 
based on the MR diagnostic criteria proposed by Stoller et al. The automatic meniscus segmentation model was constructed 
through V-net. LASSO regression was performed to extract the optimal features correlated to risk stratification. A nomogram 
model was constructed by combining the Radscore and clinical features. The performance of the models was evaluated by 
ROC analysis and calibration curve. Subsequently, the model was simulated by junior doctors in order to test its practical 
application effect.
Results  The Dice similarity coefficients of automatic meniscus segmentation models were all over 0.8. Eight optimal features, 
identified by LASSO regression, were employed to calculate the Radscore. The combined model showed a better performance 
in both the training cohort (AUC = 0.90, 95%CI: 0.84–0.95) and the validation cohort (AUC = 0.84, 95%CI: 0.72–0.93). The 
calibration curve indicated a better accuracy of the combined model than either the Radscore or clinical model alone. The 
simulation results showed that the diagnostic accuracy of junior doctors increased from 74.9 to 86.2% after using the model.
Conclusion  Deep learning V-net demonstrated great performance in automatic meniscus segmentation of the knee joint. It 
was reliable for stratifying the risk of meniscus injury of the knee by nomogram which integrated the Radscores and clinical 
features.
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Introduction

Osteoarthritis and meniscus tears are two crucial disorders 
that may occur in the knee and cause knee pain [1]. Menis-
cus tears are a common injury, with an estimated annual 
incidence as high as 60–70 per 100,000 [2]. Meniscus tears 
lead to the stress anomaly of the knee joint and composi-
tional and environmental changes of the joint, which can 

cause joint cartilage injury and articular interlocking. It is 
one of the major risk factors for the pathogenesis and pro-
gression of knee osteoarthritis [3, 4]. Therefore, the early 
diagnosis of meniscus tears is conducive to treatment strate-
gies and prognosis.

MRI is the primary diagnostic modality for evaluating 
the injury of the meniscus. However, the identification of 
meniscus injury imaging features has been mostly based on 
qualitative or semi-quantitative scoring systems [5]. Thus, 
as a traditional evaluation method, MRI is unable to assess 
the risk of meniscus injury. With the development of artifi-
cial intelligence, computer-assisted diagnostic systems have 
been proposed for the detection of abnormalities in the knee 
joint for early diagnosis and treatment purposes [1]. Deep 
learning methods of artificial intelligence have also played 
an initial role in the detection of osteoarthropathy [6–8]. The 
automatic segmentation function of deep learning has shown 
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good reliability and practicability in many fields, such as the 
segmentation of various tumours, as well as the segmenta-
tion of some large organs, such as the brain, lung, and bone 
[9–15]. Most previous studies on meniscus injury are quali-
tative assessments, and the studies regarding deep learning 
models were less explanatory and contained no visualization 
[5, 7, 16]. Radiomics has better interpretation and efficiency 
than deep learning for the classification of lesions, due to 
human supervision [17]. However, image annotation of the 
radiomic analysis was a tedious task. Artificial segmentation 
was not only time-consuming, but also poorly repeatable, 
while automatic segmentation based on deep learning could 
solve this limitation.

In this study, we hypothesized that radiomic analysis 
could identify associations between the quantitative imag-
ing features and the pathophysiology of knee meniscus tears 
and effectively and precisely stratify the risk of meniscus 
injury of the knee in MR images. The aim of the study was 
to establish an imaging model in order to stratify the risks of 
meniscus injury of the knee before therapy. We investigated 
a nomogram model combined with MR radiomic features 

and clinical features in order to improve the risk stratification 
of meniscus injury based on fully convolutional neural net-
works (CNNs) for volumetric medical image segmentation 
(V-net) for personalized precision therapy and prognosis.

Patients and methods

Our institutional review board approved this retrospective 
study, and the requirement for informed consent was waived. 
The workflow of this study was summarized in Fig. 1.

Patients

Clinical data were collected by an orthopaedic surgeon, 
including the patient’s age, gender, location of the limb, and 
history of direct violent knee trauma in the last one month.

We applied the following inclusion criteria to determine 
eligibility: (1) patients with knee pain, activity disorder, unsta-
ble joint, or had clicking of knee joints, (2) patients who were 
suspicious for meniscus injury after physical examination, (3) 

Fig. 1   The workflow of the 
study. The V-net architecture 
diagram comes from the study 
of Milletari et al. [18]
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no surgery before MRI examination, (4) MRI scans were avail-
able for qualitative and radiomic analysis.

The exclusion criteria were (1) patients with severe oste-
oarthritis of the knee joint, rheumatoid arthritis, and other 
diseases which caused severe knee joint damage, (2) patients 
with knee joint infection or systemic disease, (3) patients with 
a meniscal cyst of the knee joint, (4) patients who had poor 
image quality because of prominent image artifacts or magic 
angle effect.

Magnetic resonance scanning protocols

MRI examination was performed with different scanners in 
two institutions (institution I: MAGNETOM Avanto, Sie-
mens AG, 1.5T, Germany; institution II: GE Healthcare, 
1.5T, China), fitted with a special magnetic resonance coil 
for the knee joint. Both applied the same protocol, including 
the sagittal fat-saturated (FS) proton density-weighted image 
(PdWI) and sagittal T1-weighted images (T1WI). The scan-
ning parameters of the two institutions were as follows: T1WI 
(TR 418 ms, TE 11 ms), FS-PdWI (TR 2810 ms, TE 47 ms), 
layer thickness (3 mm), layer spacing (0.5 mm), and FOV (170 
mm × 170 mm). The images were exported in DICOM format.

Evaluation of meniscus injury

The MRI data were independently evaluated by two senior 
musculoskeletal (MSK) radiologists, with ten and 12 years 
of diagnostic experience respectively, according to the MRI 
diagnostic criteria for the knee joint proposed by Stoller et al. 
[19]. In case of disagreement, the diagnosis was made with 
another senior MSK radiologist who had 20 years of diag-
nostic experience. The final diagnosis was determined by the 
consensus of radiologists. The MR grading system was based 
on the distribution of meniscal signals in relation to an artic-
ular surface (Table 1). Grade 3 of meniscus injury required 
operation, while grade 0, grade 1, or grade 2 did not. Grade 
3 injury was defined as a tear, while the other three were not 
considered to be a tear.

Image processing, feature extraction, and screening

One radiologist with six years of experience in MSK imaging 
manually segmented the normal MR T1WI and PdWI images 
of 180 patients in the Picture Archiving and Communication 
Systems (PACS) of institution I before November 2020 using 

the uAI Research Portal. The ROIs delineated along the mar-
gin of the meniscus on each slice of the image avoided the 
image surrounding the joint capsule, cartilage, and ligaments 
and were extracted for analysis.

The delineation results were reviewed and determined 
by a MSK radiologist with ten years of experience in MSK 
imaging diagnosis. The final result was used as the refer-
ence ROI. The automatic meniscus segmentation model was 
constructed through V-net, and the relevant parameters were 
described in Supplementary I. The Dice similarity coeffi-
cient (DSC) was used to evaluate the segmentation efficiency 
of the model, and the formula was provided in Supplemen-
tary II. Subsequently, the model was used to automatically 
segment the images of 167 patients enrolled after November 
2020 from both institutions. The radiomic feature module on 
the uAI Research Portal was used to extract the features of 
ROI, and the Z-score normalization algorithm was used for 
standardization. The LASSO regression using 5-fold cross-
validation was conducted to choose the optimized subset 
of features in order to construct models based on radiomic 
features of T1WI, PdWI, and features combined with T1WI 
and PdWI. Radscore, defined by corresponding non-zero 
coefficients of features selected by LASSO, was created by 
a linear combination of selected features weighted by their 
coefficients.

Nomogram building, calibration, and external 
validation

The independent risk factors of the clinical features and 
the Radscore were integrated to build the combined model 
through multivariate logistic regression in the training 
cohort. A nomogram was constructed for risk stratification 
of meniscus tear by R software. Along with the Hosmer-
Lemeshow test measuring for the goodness of fit of the 
nomogram, the classification accuracy was assessed via 
calibration curves. ROC analysis was used to evaluate the 
classification efficacy of each model. Finally, the models 
were validated by the external validation cohort using the 
same process.

The simulation application of the model

A junior doctor with less than three years of diagnostic expe-
rience in MSK imaging reviewed all the MRIs and was blind 
to the clinical data and imaging diagnosis. Afterward, the 

Table 1   MR grading system of 
the knee meniscus Grade 0 There was no abnormality in the shape or signal of the meniscus

Grade 1 One or several punctate signal intensities not contiguous with an articular surface
Grade 2 A linear intrameniscal signal intensity without articular surface extension
Grade 3 Signal intensity extended to at least one articular surface
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doctor gave an independent diagnosis of a knee meniscus 
injury, and one week later, a second diagnosis was made 
with the assistance of a prediction result from the nomo-
gram. The differences in the capability stratification between 
the two diagnostic results were compared by Pearson’s chi-
square test.

Statistical analysis

Statistical analysis was conducted by MedCalc (version 
19.1) and R software (version 4.1.2). Binary logistic regres-
sion analysis was performed to screen out the clinically 
independent risk factors. Variables of normal distribution 
were shown as mean ± SD. Variables of non-normal distri-
bution were shown as median [iqr]. For continuous clinical 
variables, Student’s t-tests or Mann-Whitney U tests were 
conducted. For categorical clinical factors, Pearson’s chi-
square tests or Fisher’s exact tests were conducted. P < 0.05 
was considered statistically significant. The Wilcoxon test 
was used to compare the evaluation efficiency of the Rad-
scores in the training and validation cohorts regarding the 
risk degree of meniscus injury. The Hosmer-Lemeshow test 
was used to analyze the fit degree of the model, and P > 
0.05 indicated that the model fit was good. The sensitivity, 
specificity, and AUC of the ROC were used to evaluate the 
classification efficacy by DeLong’s test.

Results

Automatic segmentation model of meniscus

A total of 180 knee MRIs were used to construct the auto-
matic meniscus segmentation model. One hundred forty-
four cases from institution I were taken as the training 
set, and 36 cases from institution II were taken for valida-
tion. The DSCs of the automatic segmentation model on 

PdWI were medial (0.88, 95%CI:0.87–0.89) and lateral 
(0.86, 95%CI:0.81–0.91) and on T1WI were medial (0.89, 
95%CI:0.88–0.89) and lateral (0.88, 95%CI:0.87–0.88).

Patient characteristics

A total of 167 patients admitted to the hospital after Novem-
ber 2020 were recruited in this study, including 62 males and 
105 females (ages: 11–90 years, mean age: 53.1±16.4 years). 
Among them, 116 patients from institution I were used as the 
training cohort, and 51 patients from institution II were used as 
the external validation cohort. According to the MRI diagnos-
tic criteria proposed by Stoller et al., all subjects were divided 
into either the tear group (n = 90) or the non-tear group (n = 
77). Table 2 shows the clinical characteristics and Radscores 
of these two cohorts. No significant difference was observed 
in the clinical data for gender and injury history between the 
training and validation cohorts (P > 0.05). However, the age 
and location showed significant differences in training cohorts 
(P < 0.05). The Radscores had significant differences in both 
cohorts (P < 0.001). The age (OR=1.073, P< 0.001) and loca-
tion (OR=3.432, P < 0.05) were screened as independent risk 
factors by binary logistic regression, and the clinical feature 
model equation is shown in Supplementary Table S1

Radiomic analysis

In this study, a total of 2600 radiomic features in eight cat-
egories were extracted, and a total of twelve T1WI and nine 
PdWI features were obtained by dimensionality reduction of 
all features using LASSO regression, respectively (Supple-
mentary III, Table S2, S3). Radscore(T1) and Radscore(Pd) 
were obtained by summing the correlation coefficients, respec-
tively. After the LASSO regression, eight features were finally 
selected, which included three T1WI and five PdWI features 
(supplementary Table S4). Heatmap of feature correlation coef-
ficients is shown in Fig. 2, and clustering analysis was provided 

Table 2   Clinical characteristics of training cohort and the validation cohort

The symbol “*” indicates asignificant statistical difference

Variable Training cohort (n=116) P value Validation cohort (n=51) P value

Tear (58) No tear (58) Tear (32) No tear (19)

Age Mean ± (SD) 60.7±14.3 45±17.1 0.000* 56.1±13.5 49.3±12.3 0.08
Trauma [n (%)] No 49 (84) 46 (79) 0.469 27 (84) 18 (95) 0.509

Yes 9 (16) 12 (21) 5 (16) 1 (5)
Gender [n (%)] Female 37 (64) 33 (57) 0.448 22 (69) 13 (68) 0.98

Male 21 (36) 25 (43) 10 (31) 6 (32)
Location [n (%)] Right knee 36 (62) 23 (40) 0.016* 19 (59) 8 (42) 0.232

Left knee 22 (38) 35 (60) 13 (41) 11 (58)
Radscore(T1) Median [iqr] 0.56 [−0.25, 1.17] −0.60 [−0.85, −0.23] 0.000* 0.21 [−0.67, 0.86] −0.58 [−1.04, −0.1] 0.027*
Radscore(Pd) Median [iqr] 0.68 [−0.14, 1.16] −0.58 [−1.19, 0.12] 0.000* 0.45 [−0.07, 0.95] −0.071 [−1.09,0.31] 0.027*
Radscore(M) Median [iqr] 0.55 [0.14, 1.13] −0.71 [−1.23,−0.18] 0.000* 0.58 [0.04, −1.19] −0.73 [−1.08, −0.19] 0.000*
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in the supplementary (Fig. S1). Radscore (multiple sequence, 
M) =0.032819055*feature1+(−0.0322553255)*feature2++(−
0.0421443656)*feature3+0.1094842*feature4+0.002099369*
feature5+(−0.00498326868)*feature6+(−0.0263792761) *fea
ture7+(−0.0357271321)*feature8+0.538922131

There were statistically significant differences in the 
Radscore(M) for both the training and validation cohorts 
of the tear and non-tear groups (P<0.001) (Fig.  3). 
Radscore(M), combined with two clinical features (age 
and location) as the risk factors to evaluate the risk degree 
of meniscus injury, was used to establish the combined 
model. The nomogram which demonstrated the visuali-
zation of the model is shown in Fig. 4. Meanwhile, the 
Hosmer-Lemeshow test (P=0.51) and the calibration 
curve showed that the nomogram had a good fit and mean 
absolute error=0.014 (Fig. S3). ROC curves showed that 
the AUC of the combined model was higher in the train-
ing cohort than that of the clinical model and the T1WI 
radiomic model (z=2.136, 2.228, P=0.0327, 0.0259, 
respectively). In the validation cohort, the AUC of the 
combined model and radiomic model was higher than 
that of the clinical model and T2WI radiomic model, (z 
=2.353, 2.722, 2.917, 2.453, P = 0.0186, 0.0065, 0.0035, 
and 0.0142 respectively) (Fig. S4, Table 3). The results of 
the simulation application of the nomogram are shown in 
Table 4. After the application of the nomogram, the missed 
diagnosis of junior doctors was significantly reduced. The 
diagnostic sensitivity was significantly improved (0.9 vs. 
0.6, P < 0.001), and the diagnostic accuracy was also sig-
nificantly improved (0.86 vs. 0.75, P < 0.01).

Discussion

In this study, an automatic meniscus segmentation model 
of knee MRI based on deep learning V-net was constructed, 
and a combined clinical-radiomic model was established 
to evaluate the risk of knee meniscus injury. The results 
showed that the automatic segmentation model had a good 
segmentation efficiency. Both the combined and radiomic 
models were superior to the clinical model, and the T1WI 
and PdWI combined model was superior to the T1WI or 

Fig. 2   Heatmap showing the correlation of the top eight tear-predic-
tive radiomic features of the combined model
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Fig. 3   Wilcoxon’s analysis of Radscore(M). The Radscore(M) of the 
tear group was significantly higher than that of the non-tear group in 
both the training group and the validation group

Fig. 4   Nomogram of the combined model in the training cohort (the 
location of 0 represents the left knee and 1 represents the right knee). 
For example, a 60-year-old man underwent magnetic resonance imag-
ing because of discomfort in the right knee joint. After calculation by 
radiomic analysis, the Radscore(M) value of the meniscus was −0.8, 
so his total point was 16 + 22.5 + 42.5(red arrow) = 81, and the cor-
responding risk of meniscus injury was about 0.6 (blue arrow). For 
details, see Fig. S2
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PdWI model alone. Meanwhile, the nomogram demon-
strated the visualization of the model for meniscus injury 
risk, indicating that the nomogram could be used as a quan-
titative stratification tool for meniscus injury risk.

At present, the evaluation of MRI for the meniscus of 
the knee joint was mainly based on qualitative diagnosis, 
which can only interpret the presence or absence of a 
meniscus tear but cannot evaluate the risk of a menis-
cus tear. Roblot et al. developed a deep learning model 
based on CNNs, consisting of 1123 MRIs of knee joints 
with an AUC of 0.94. However, the dataset contained 
only two T2-weighted images per patient, and it had poor 
explanation [20]. The model in this study was based on 
a small sample size of 3D image information including 
the entire medial and lateral meniscus, and it combined 
the radiomic features of T1WI and PdWI. In addition to 
basic morphological features, it also included internal 
information such as texture features and wavelet features. 
Furthermore, we used the nomogram to realize the visu-
alization of the model.

V-net is a network architecture based on CNNs that have 
been developed in recent years and have been mainly pro-
posed for three-dimensional medical images. A series of 
recent studies have demonstrated its superior automatic seg-
mentation performance [21–24], while the required sample 
size was not as large as expected. In this study, only 180 
patients were used to construct the automatic segmenta-
tion models. Four automatic segmentation models were 

constructed in this study, and the DSCs of the models on 
T1WI and PdWI sequences were greater than 0.8. We tried to 
merge the medial and lateral meniscus as a combined model, 
but it was found that only one side of the meniscus underwent 
random automatic segmentation. On the other hand, the seg-
mentation efficiency of the separate models was ideal. We 
speculated that, firstly, the medial and lateral menisci were 
anatomically two independent structures, and putting the two 
independent ROIs in the same model caused confusion in 
model identification; secondly, our sample size was too small 
to fuse the two independent ROIs by V-net. Therefore, we 
believed that it would be better to construct segmentation 
models separately for two or more disconnected ROIs based 
on small samples. We also calculated the time cost of manual 
and automatic segmentation. Manually segmenting a case 
took about 15 min, while an automatic segmentation model 
only required less than ten s for each sequence for one side 
of the meniscus, taking about 30 s to complete a case. Com-
pared with single-case segmentation, batch segmentation did 
not require opening every case. Although it only saved about 
10 s for each case, the cumulative time for a large number of 
data was considerably significant.

In our radiomic model, a total of eight features from two 
sequences were extracted, which included gray level size zone 
matrix (GLSZM), gray level dependence matrix (GLDM), 
and gray level cooccurrence matrix (GLCM) mainly focused 
on texture features, which demonstrated that the inher-
ent heterogeneity of the meniscus was better than utilizing 

Table 3   Comparison between 
the training and validation 
cohort models

AUC​ area under the ROC curve, SEN sensitivity, SPEC specificity, YIJ Youden’s index J

Model Training cohort Validation cohort

AUC (95%CI) YIJ SEN SPEC AUC (95%CI) YIJ SEN SPEC

Clinical 0.83 (0.75 to 0.90) 0.60 0.93 0.67 0.69 (0.55 to 0.81) 0.32 0.84 0.47
T1WI 0.82 (0.74 to 0.88) 0.59 0.90 0.69 0.71 (0.57 to 0.83) 0.43 0.53 0.89
PdWI 0.86 (0.79 to 0.92) 0.57 0.72 0.84 0.73 (0.58 to 0.84) 0.37 0.69 0.68
T1 and PdWI 0.87 (0.80 to 0.93) 0.66 0.84 0.81 0.86 (0.73 to 0.94) 0.62 0.78 0.84
Combined 0.90 (0.84 to 0.95) 0.69 0.86 0.82 0.84 (0.72 to 0.93) 0.60 0.81 0.79

Table 4   Comparison of 
diagnosis results of junior 
doctor before and after using the 
nomogram

SEN sensitivity, SPEC specificity, ACC​ accuracy

Three dimensional Chi-square test + (Tear) − (No tear)

Doctor Doctor

Doctor using nomogram + − Total + − Total
+ 52 29 81 3 11 14
− 2 7 9 3 60 63
Total 54 36 90 6 71 77

Group SEN SPEC ACC​
Doctor 0.6 0.92 0.75
Doctor using nomogram 0.9 0.82 0.86
X2, P 21.81, 0.000 3.5, 0.061 8.02, 0.005



2503International Orthopaedics (2023) 47:2497–2505	

1 3

morphological features to identify meniscus damage. Among 
these, PdWI features were the majority, also indicating that 
the PdWI sequence had more advantages in the identification 
of meniscus injury. This finding was also in line with clinical 
data, as we relied more on the PdWI sequence for the identifi-
cation of meniscus injury. However, when the features of the 
two sequences were combined, the diagnostic efficiency was 
improved, indicating that a single sequence had its own limita-
tions, while the combined advantages were complementary.

In this study, the model was visualized by nomogram, 
through which the risk of meniscus injury could be quan-
tified. A higher calculated value suggested an increased 
risk of meniscus injury. For instance, a typical case was 
seen in a 57-year-old patient initially diagnosed with II 
meniscus injury; however, the nomogram showed a high 
risk of injury, and III injury was found in the follow-up 
review six months later (Fig. 5). If we had intervened in 
patients at high risk of injury before further development, 
we may have been able to delay the progression of injury. 
Therefore, the nomogram made it easier to understand the 
prognosis and helped make clinical decisions [25].

The incidence of asymptomatic meniscus tears has been 
reported to increase with age [26]. This was consistent 

with our study. We also found that the meniscus of the 
right knee was more prone to tear than the left knee (P 
<0.01), which was due to the fact that the dominant limb 
of most patients in this study was the right limb. How-
ever, to our surprise, a history of direct violent knee injury 
within one month was not a risk factor for meniscal tears. 
This could indicate that most meniscus damages was a 
chronic process, and an acute injury that directly resulted 
in a tear of the meniscus was relatively rare unless a blow-
out fracture involved the articular surface.

The diagnostic accuracy of our combined model was 
88.79% (103/116) for the training cohort and 84.31% (43/51) 
for the validation cohort, which was close to or even greater 
than that of the junior doctor. With the help of the nomo-
gram, the diagnostic accuracy of the junior doctor was 
greatly improved from 0.75 to 0.85, and the rate of missed 
diagnosis significantly decreased from 0.4 to 0.1. Therefore, 
the nomogram was expected to help doctors save time for 
image evaluation and improve diagnostic efficiency.

There were some limitations in the current study that 
still needs to be further investigated. (1) The automatic 
segmentation model in this study needs to distinguish the 
medial and lateral meniscus, which would increase a certain 

Fig. 5   A 57-year-old female 
patient underwent an initial MR 
examination of the knee joint 
(a, b two consecutive layers of 
sagittal PdWI), which showed 
fluid in the joint cavity (thin 
black arrow), femoral bone mar-
row oedema (thin white arrow), 
and II injury of the posterior 
angle of the medial meniscus 
(thick black arrow). Radiomic 
analysis showed Radscore = 
0.634 when combined with the 
nomogram. The total score was 
about 120, indicating that the 
risk of tear was over 90%. The 
patient was not specially treated, 
and the knee MR was reexam-
ined after half a year of rest 
(c, d two consecutive layers of 
sagittal PdWI): joint cavity effu-
sion and bone marrow oedema 
absorption was seen, while the 
medial meniscus of the original 
II injury progressed to III injury 
(white thick arrow)
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amount of work for practical application. (2) This study did 
not include discoid meniscus due to a small sample size and 
few incidences of cases. (3) This study did not separate the 
tear type from the tear group.

Conclusions

This study constructed an automatic segmentation model 
of knee joint meniscus based on V-net. A clinical-radiomic 
nomogram was established and could potentially be used as 
a reliable tool to evaluate the risk of knee meniscus injury, 
suggesting great future possibilities for clinical applications.
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